These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 25264953)

  • 1. Shaping of looped miniaturized chalcogenide fiber sensing heads for mid-infrared sensing.
    Houizot P; Anne ML; Boussard-Plédel C; Loréal O; Tariel H; Lucas J; Bureau B
    Sensors (Basel); 2014 Sep; 14(10):17905-14. PubMed ID: 25264953
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Te-based glass fiber for far-infrared biochemical sensing up to 16 μm.
    Cui S; Boussard-Plédel C; Lucas J; Bureau B
    Opt Express; 2014 Sep; 22(18):21253-62. PubMed ID: 25321505
    [TBL] [Abstract][Full Text] [Related]  

  • 3. From selenium- to tellurium-based glass optical fibers for infrared spectroscopies.
    Cui S; Chahal R; Boussard-Plédel C; Nazabal V; Doualan JL; Troles J; Lucas J; Bureau B
    Molecules; 2013 May; 18(5):5373-88. PubMed ID: 23666005
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Flexible chalcogenide glass large-core multimode fibers for hundred-watt-level mid-infrared 2-5 µm laser transmission.
    Qi S; Li Y; Huang Z; Ren H; Sun W; Shi J; Wang F; Shen D; Feng X; Yang Z
    Opt Express; 2022 Apr; 30(9):14629-14644. PubMed ID: 35473202
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Infrared Evanescent Wave Sensing Based on a Ge
    Li Z; Zhao Y; You T; Zhu J; Xia M; Lu P; Zhang X; Xu Y
    Sensors (Basel); 2023 May; 23(10):. PubMed ID: 37430755
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chalcogenide Taper and Its Nonlinear Effects and Sensing Applications.
    Gao S; Bao X
    iScience; 2020 Jan; 23(1):100802. PubMed ID: 31927486
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coherent Mid-IR Supercontinuum Generation using Tapered Chalcogenide Step-Index Optical Fiber: Experiment and modelling.
    Saini TS; Tuan TH; Suzuki T; Ohishi Y
    Sci Rep; 2020 Feb; 10(1):2236. PubMed ID: 32042097
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Remote fiber-optic chemical sensing using evanescent-wave interactions in chalcogenide glass fibers.
    Heo J; Rodrigues M; Saggese SJ; Sigel GH
    Appl Opt; 1991 Sep; 30(27):3944-51. PubMed ID: 20706486
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimizing Evanescent Efficiency of Chalcogenide Tapered Fiber.
    Zhao X; Yao N; Zhang X; Zhang L; Tao G; Li Z; Liu Q; Zhao X; Xu Y
    Materials (Basel); 2022 May; 15(11):. PubMed ID: 35683134
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Progress in rare-earth-doped mid-infrared fiber lasers.
    Seddon AB; Tang Z; Furniss D; Sujecki S; Benson TM
    Opt Express; 2010 Dec; 18(25):26704-19. PubMed ID: 21165021
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Solution-processed chalcogenide glass for integrated single-mode mid-infrared waveguides.
    Tsay C; Zha Y; Arnold CB
    Opt Express; 2010 Dec; 18(25):26744-53. PubMed ID: 21165024
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evanescent-wave infrared spectroscopy with flattened fibers as sensing elements.
    Raichlin Y; Fel L; Katzir A
    Opt Lett; 2003 Dec; 28(23):2297-9. PubMed ID: 14680161
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chalcogenide glass optical waveguides for infrared biosensing.
    Anne ML; Keirsse J; Nazabal V; Hyodo K; Inoue S; Boussard-Pledel C; Lhermite H; Charrier J; Yanakata K; Loreal O; Le Person J; Colas F; Compère C; Bureau B
    Sensors (Basel); 2009; 9(9):7398-411. PubMed ID: 22423209
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evanescent-wave excitation of surface-enhanced Raman scattering substrates by an optical-fiber taper.
    Su L; Lee TH; Elliott SR
    Opt Lett; 2009 Sep; 34(17):2685-7. PubMed ID: 19724532
    [TBL] [Abstract][Full Text] [Related]  

  • 15. State-of-the-Art Optical Microfiber Coupler Sensors for Physical and Biochemical Sensing Applications.
    Dai M; Chen Z; Zhao Y; Gandhi MSA; Li Q; Fu H
    Biosensors (Basel); 2020 Nov; 10(11):. PubMed ID: 33218037
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surface Functionalization with Polymer Membrane or SEIRA Interface to Improve the Sensitivity of Chalcogenide-Based Infrared Sensors Dedicated to the Detection of Organic Molecules.
    Baillieul M; Rinnert E; Lemaitre J; Michel K; Colas F; Bodiou L; Demésy G; Kakuta S; Rumyantseva A; Lerondel G; Boukerma K; Renversez G; Toury T; Charrier J; Nazabal V
    ACS Omega; 2022 Dec; 7(51):47840-47850. PubMed ID: 36591173
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Robust multimaterial tellurium-based chalcogenide glass fibers for mid-wave and long-wave infrared transmission.
    Tao G; Shabahang S; Ren H; Khalilzadeh-Rezaie F; Peale RE; Yang Z; Wang X; Abouraddy AF
    Opt Lett; 2014 Jul; 39(13):4009-12. PubMed ID: 24978794
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Low-loss, robust fusion splicing of silica to chalcogenide fiber for integrated mid-infrared laser technology development.
    Thapa R; Gattass RR; Nguyen V; Chin G; Gibson D; Kim W; Shaw LB; Sanghera JS
    Opt Lett; 2015 Nov; 40(21):5074-7. PubMed ID: 26512522
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Se-H-free As
    Wang J; Wu G; Feng Z; Wang J; Wang Y; Jiao K; Wang X; Bai S; Zhang P; Zhao Z; Wang R; Wang X; Nie Q
    Opt Express; 2022 Jun; 30(13):24072-24083. PubMed ID: 36225076
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Broadband mid-infrared (2.5-5.5  µm) emission from Co
    Lu X; Li J; Yang L; Ren J; Sun M; Yang A; Yang Z; Jain RK; Wang P
    Opt Lett; 2020 May; 45(9):2676-2679. PubMed ID: 32356844
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.