BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 25265041)

  • 1. Recombinant protein-stabilized monodisperse microbubbles with tunable size using a valve-based microfluidic device.
    Angilè FE; Vargo KB; Sehgal CM; Hammer DA; Lee D
    Langmuir; 2014 Oct; 30(42):12610-8. PubMed ID: 25265041
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Engineering the Echogenic Properties of Microfluidic Microbubbles Using Mixtures of Recombinant Protein and Amphiphilic Copolymers.
    Chen Z; Pulsipher KW; Chattaraj R; Hammer DA; Sehgal CM; Lee D
    Langmuir; 2019 Aug; 35(31):10079-10086. PubMed ID: 30768278
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photoacoustic and Ultrasound Dual-Mode Imaging via Functionalization of Recombinant Protein-Stabilized Microbubbles with Methylene Blue.
    Chen Z; Chattaraj R; Pulsipher KW; Karmacharya MB; Hammer DA; Lee D; Sehgal CM
    ACS Appl Bio Mater; 2019 Sep; 2(9):4020-4026. PubMed ID: 35021335
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Flow-focusing regimes for accelerated production of monodisperse drug-loadable microbubbles toward clinical-scale applications.
    Shih R; Bardin D; Martz TD; Sheeran PS; Dayton PA; Lee AP
    Lab Chip; 2013 Dec; 13(24):4816-26. PubMed ID: 24162868
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preparation of monodisperse microbubbles using an integrated embedded capillary T-junction with electrohydrodynamic focusing.
    Parhizkar M; Stride E; Edirisinghe M
    Lab Chip; 2014 Jul; 14(14):2437-46. PubMed ID: 24837066
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis and characterization of transiently stable albumin-coated microbubbles via a flow-focusing microfluidic device.
    Chen JL; Dhanaliwala AH; Dixon AJ; Klibanov AL; Hossack JA
    Ultrasound Med Biol; 2014 Feb; 40(2):400-9. PubMed ID: 24342914
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Controllable Formation of Monodisperse Polymer Microbubbles as Ultrasound Contrast Agents.
    Song R; Peng C; Xu X; Wang J; Yu M; Hou Y; Zou R; Yao S
    ACS Appl Mater Interfaces; 2018 May; 10(17):14312-14320. PubMed ID: 29637761
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Size reduction of cosolvent-infused microbubbles to form acoustically responsive monodisperse perfluorocarbon nanodroplets.
    Seo M; Williams R; Matsuura N
    Lab Chip; 2015 Sep; 15(17):3581-90. PubMed ID: 26220563
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Freeze-Dried Microfluidic Monodisperse Microbubbles as a New Generation of Ultrasound Contrast Agents.
    Soysal U; Azevedo PN; Bureau F; Aubry A; Carvalho MS; Pessoa ACSN; Torre LG; Couture O; Tourin A; Fink M; Tabeling P
    Ultrasound Med Biol; 2022 Aug; 48(8):1484-1495. PubMed ID: 35568594
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Acoustic characterization of monodisperse lipid-coated microbubbles: relationship between size and shell viscoelastic properties.
    Parrales MA; Fernandez JM; Perez-Saborid M; Kopechek JA; Porter TM
    J Acoust Soc Am; 2014 Sep; 136(3):1077. PubMed ID: 25190383
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Combining Ultrasound and Capillary-Embedded T-Junction Microfluidic Devices to Scale Up the Production of Narrow-Sized Microbubbles through Acoustic Fragmentation.
    Khan AH; Jiang X; Kaushik A; Nair HS; Edirisinghe M; Mercado-Shekhar KP; Shekhar H; Dalvi SV
    Langmuir; 2022 Aug; 38(33):10288-10304. PubMed ID: 35943351
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microfluidic manufacture of rt-PA -loaded echogenic liposomes.
    Kandadai MA; Mukherjee P; Shekhar H; Shaw GJ; Papautsky I; Holland CK
    Biomed Microdevices; 2016 Jun; 18(3):48. PubMed ID: 27206512
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Controlled Shrinkage of Microfluidically Generated Microbubbles by Tuning Lipid Concentration.
    Zalloum IO; Paknahad AA; Kolios MC; Karshafian R; Tsai SSH
    Langmuir; 2022 Nov; 38(43):13021-13029. PubMed ID: 36260341
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microfluidic system for high throughput characterisation of echogenic particles.
    Rademeyer P; Carugo D; Lee JY; Stride E
    Lab Chip; 2015 Jan; 15(2):417-28. PubMed ID: 25367757
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sensitivity improvement of subharmonic-based pressure measurement using phospholipid-coated monodisperse microbubbles.
    Wang P; Tan C; Ji X; Bai J; Yu ACH; Qin P
    Ultrason Sonochem; 2024 Mar; 104():106830. PubMed ID: 38432151
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Engineering Theranostic Microbubbles Using Microfluidics for Ultrasound Imaging and Therapy: A Review.
    Pulsipher KW; Hammer DA; Lee D; Sehgal CM
    Ultrasound Med Biol; 2018 Dec; 44(12):2441-2460. PubMed ID: 30241729
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Monodisperse versus Polydisperse Ultrasound Contrast Agents: In Vivo Sensitivity and safety in Rat and Pig.
    Helbert A; Gaud E; Segers T; Botteron C; Frinking P; Jeannot V
    Ultrasound Med Biol; 2020 Dec; 46(12):3339-3352. PubMed ID: 33008649
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spherical micelles assembled from variants of recombinant oleosin.
    Vargo KB; Sood N; Moeller TD; Heiney PA; Hammer DA
    Langmuir; 2014 Sep; 30(38):11292-300. PubMed ID: 25145981
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Liquid Flooded Flow-Focusing Microfluidic Device for in situ Generation of Monodisperse Microbubbles.
    Dhanaliwala AH; Chen JL; Wang S; Hossack JA
    Microfluid Nanofluidics; 2013 Mar; 14(3-4):457-467. PubMed ID: 23439786
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microbubbles Stabilized by Protein Shell: From Pioneering Ultrasound Contrast Agents to Advanced Theranostic Systems.
    Rudakovskaya PG; Barmin RA; Kuzmin PS; Fedotkina EP; Sencha AN; Gorin DA
    Pharmaceutics; 2022 Jun; 14(6):. PubMed ID: 35745808
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.