These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 25265180)

  • 41. Suppression of spurious lateral modes in thickness-excited FBAR resonators.
    Rosén D; Bjurström J; Katardjiev I
    IEEE Trans Ultrason Ferroelectr Freq Control; 2005 Jul; 52(7):1189-92. PubMed ID: 16212259
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Modulating the Performance of the SAW Strain Sensor Based on Dual-Port Resonator Using FEM Simulation.
    Cheng C; Lu Z; Yang J; Gong X; Ke Q
    Materials (Basel); 2023 Apr; 16(8):. PubMed ID: 37110107
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Solidly Mounted Longitudinally Excited Shear Wave Resonator (YBAR) Based on Lithium Niobate Thin-Film.
    Qin ZH; Wu SM; Wang Y; Liu KF; Wu T; Yu SY; Chen YF
    Micromachines (Basel); 2021 Aug; 12(9):. PubMed ID: 34577683
    [TBL] [Abstract][Full Text] [Related]  

  • 44. 3D Simulation-Based Acoustic Wave Resonator Analysis and Validation Using Novel Finite Element Method Software.
    Vidana Morales RY; Ortega Cisneros S; Camacho Perez JR; Sandoval Ibarra F; Casas Carrillo R
    Sensors (Basel); 2021 Apr; 21(8):. PubMed ID: 33921505
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Resonances and energy trapping in AT-cut quartz resonators operating with fast shear modes driven by lateral electric fields produced by surface electrodes.
    Ma T; Wang J; Du J; Yang J
    Ultrasonics; 2015 May; 59():14-20. PubMed ID: 25660411
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Semi-analytical modeling of anchor loss in plate-mounted resonators.
    Schaal C; M'Closkey R; Mal A
    Ultrasonics; 2018 Jan; 82():304-312. PubMed ID: 28941397
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Graphene as an active virtually massless top electrode for RF solidly mounted bulk acoustic wave (SMR-BAW) resonators.
    Knapp M; Hoffmann R; Lebedev V; Cimalla V; Ambacher O
    Nanotechnology; 2018 Mar; 29(10):105302. PubMed ID: 29320371
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Tungsten Oxide Layers of High Acoustic Impedance for Fully Insulating Acoustic Reflectors.
    DeMiguel-Ramos M; Diaz-Duran B; Munir J; Clement M; Mirea T; Olivares J; Iborra E
    IEEE Trans Ultrason Ferroelectr Freq Control; 2016 Jul; 63(7):938-44. PubMed ID: 26571521
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Optimization of AIN Composite Structure Based Surface Acoustic Wave Device for Potential Sensing at Extremely High Temperature.
    Fan S; Wang W; Li X; Jia Y; Sun Y; Liu M
    Sensors (Basel); 2020 Jul; 20(15):. PubMed ID: 32726902
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Design, simulation, and visualization of R-SPUDT devices with transverse mode suppression.
    Solal M; Holmgren O; Kokkonen K
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010; 57(2):412-20. PubMed ID: 20178907
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Optimization of Surface Acoustic Wave Resonators on 42°Y-X LiTaO
    Pan H; Yang Y; Li L; Zhang Q; Zheng Z; Du X; Chen P; Dong J; Lu C; Xie X; Li H; Xiao Q; Ma J; Chen Z
    Micromachines (Basel); 2023 Dec; 15(1):. PubMed ID: 38276840
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Analytical study of dual-mode thin film bulk acoustic resonators (FBARs) based on ZnO and AlN films with tilted c-axis orientation.
    Qin L; Chen Q; Cheng H; Wang QM
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Aug; 57(8):1840-53. PubMed ID: 20679013
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The Main Lateral Mode Approximation of a Film Bulk Acoustic Resonator With Perfect Metal Electrodes.
    Jamneala T; Kirkendall C; Ivira B; Thalhammer RK; Bradley P; Ruby R
    IEEE Trans Ultrason Ferroelectr Freq Control; 2018 Sep; 65(9):1703-1716. PubMed ID: 29994250
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The impact of area on BAW resonator performance and an approach to device miniaturization.
    Nguyen N; Johannessen A; Rooth S; Hanke U
    Ultrasonics; 2019 Apr; 94():92-101. PubMed ID: 30595389
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Generation and reception of shear horizontal waves using the synthetic face-shear mode of a thickness-poled piezoelectric wafer.
    Huan Q; Miao H; Li F
    Ultrasonics; 2018 May; 86():20-27. PubMed ID: 29407278
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Finite element model of surface acoustic wave method for mechanical characterization of patterned thin films of the ultra-large scaled integrated interconnect.
    Xiao X; Shan X; Tao Y; Sun Y; Kikkawa T
    J Nanosci Nanotechnol; 2013 Feb; 13(2):1602-6. PubMed ID: 23646690
    [TBL] [Abstract][Full Text] [Related]  

  • 57. High-Frequency and Spectrum-Clean Shear-Horizontal Acoustic Wave Resonators with AlN Overlay.
    Wu Z; Wu S; Bao F; Zou J
    Micromachines (Basel); 2022 Jun; 13(7):. PubMed ID: 35888846
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Finite element simulations of thin-film composite BAW resonators.
    Makkonen T; Holappa A; Ellä J; Salomaa MM
    IEEE Trans Ultrason Ferroelectr Freq Control; 2001 Sep; 48(5):1241-58. PubMed ID: 11570749
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Optimal shaping of acoustic resonators for the generation of high-amplitude standing waves.
    Červenka M; Šoltés M; Bednařík M
    J Acoust Soc Am; 2014 Sep; 136(3):1003. PubMed ID: 25190376
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Modified mason model for bulk acoustic wave resonators.
    Jamneala T; Bradley P; Koelle UB; Chien A
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Sep; 55(9):2025-9. PubMed ID: 18986898
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.