BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 25265272)

  • 1. Electronic structure and chemical nature of oxygen dopant states in carbon nanotubes.
    Ma X; Adamska L; Yamaguchi H; Yalcin SE; Tretiak S; Doorn SK; Htoon H
    ACS Nano; 2014 Oct; 8(10):10782-9. PubMed ID: 25265272
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct observation of deep excitonic states in the photoluminescence spectra of single-walled carbon nanotubes.
    Kiowski O; Arnold K; Lebedkin S; Hennrich F; Kappes MM
    Phys Rev Lett; 2007 Dec; 99(23):237402. PubMed ID: 18233410
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Carbon Nanotube Photoluminescence Modulation by Local Chemical and Supramolecular Chemical Functionalization.
    Shiraki T; Miyauchi Y; Matsuda K; Nakashima N
    Acc Chem Res; 2020 Sep; 53(9):1846-1859. PubMed ID: 32791829
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photoluminescence Dynamics of Aryl sp(3) Defect States in Single-Walled Carbon Nanotubes.
    Hartmann NF; Velizhanin KA; Haroz EH; Kim M; Ma X; Wang Y; Htoon H; Doorn SK
    ACS Nano; 2016 Sep; 10(9):8355-65. PubMed ID: 27529740
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Low-Temperature Single Carbon Nanotube Spectroscopy of sp
    He X; Gifford BJ; Hartmann NF; Ihly R; Ma X; Kilina SV; Luo Y; Shayan K; Strauf S; Blackburn JL; Tretiak S; Doorn SK; Htoon H
    ACS Nano; 2017 Nov; 11(11):10785-10796. PubMed ID: 28958146
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Observation of charged excitons in hole-doped carbon nanotubes using photoluminescence and absorption spectroscopy.
    Matsunaga R; Matsuda K; Kanemitsu Y
    Phys Rev Lett; 2011 Jan; 106(3):037404. PubMed ID: 21405298
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Direct observation of dark excitons in individual carbon nanotubes: inhomogeneity in the exchange splitting.
    Srivastava A; Htoon H; Klimov VI; Kono J
    Phys Rev Lett; 2008 Aug; 101(8):087402. PubMed ID: 18764659
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photoluminescence Dynamics Defined by Exciton Trapping Potential of Coupled Defect States in DNA-Functionalized Carbon Nanotubes.
    Zheng Y; Weight BM; Jones AC; Chandrasekaran V; Gifford BJ; Tretiak S; Doorn SK; Htoon H
    ACS Nano; 2021 Jan; 15(1):923-933. PubMed ID: 33395262
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photoluminescence of single-walled carbon nanotubes: the role of Stokes shift and impurity levels.
    Mu J; Ma Y; Yin H; Liu C; Rohlfing M
    Phys Rev Lett; 2013 Sep; 111(13):137401. PubMed ID: 24116815
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nonlinear photoluminescence spectroscopy of carbon nanotubes with localized exciton states.
    Iwamura M; Akizuki N; Miyauchi Y; Mouri S; Shaver J; Gao Z; Cognet L; Lounis B; Matsuda K
    ACS Nano; 2014 Nov; 8(11):11254-60. PubMed ID: 25331628
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multiple exciton generation and recombination in carbon nanotubes and nanocrystals.
    Kanemitsu Y
    Acc Chem Res; 2013 Jun; 46(6):1358-66. PubMed ID: 23421584
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photoluminescence imaging of solitary dopant sites in covalently doped single-wall carbon nanotubes.
    Hartmann NF; Yalcin SE; Adamska L; Hároz EH; Ma X; Tretiak S; Htoon H; Doorn SK
    Nanoscale; 2015 Dec; 7(48):20521-30. PubMed ID: 26586162
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Broken Symmetry Optical Transitions in (6,5) Single-Walled Carbon Nanotubes Containing
    Trerayapiwat KJ; Li X; Ma X; Sharifzadeh S
    Nano Lett; 2024 Jan; 24(2):667-671. PubMed ID: 38174941
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Suppression of exciton dephasing in sidewall-functionalized carbon nanotubes embedded into metallo-dielectric antennas.
    Shayan K; He X; Luo Y; Rabut C; Li X; Hartmann NF; Blackburn JL; Doorn SK; Htoon H; Strauf S
    Nanoscale; 2018 Jul; 10(26):12631-12638. PubMed ID: 29943788
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Excitons in Single-Walled Carbon Nanotubes and Their Dynamics.
    Amori AR; Hou Z; Krauss TD
    Annu Rev Phys Chem; 2018 Apr; 69():81-99. PubMed ID: 29401037
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Low temperature emission spectra of individual single-walled carbon nanotubes: multiplicity of subspecies within single-species nanotube ensembles.
    Htoon H; O'Connell MJ; Cox PJ; Doorn SK; Klimov VI
    Phys Rev Lett; 2004 Jul; 93(2):027401. PubMed ID: 15323949
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of bright and dark excitons in the temperature-dependent photoluminescence of carbon nanotubes.
    Mortimer IB; Nicholas RJ
    Phys Rev Lett; 2007 Jan; 98(2):027404. PubMed ID: 17358649
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Propagative Sidewall Alkylcarboxylation that Induces Red-Shifted Near-IR Photoluminescence in Single-Walled Carbon Nanotubes.
    Zhang Y; Valley N; Brozena AH; Piao Y; Song X; Schatz GC; Wang Y
    J Phys Chem Lett; 2013 Mar; 4(5):826-30. PubMed ID: 26281939
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Solvent- and Wavelength-Dependent Photoluminescence Relaxation Dynamics of Carbon Nanotube sp
    He X; Velizhanin KA; Bullard G; Bai Y; Olivier JH; Hartmann NF; Gifford BJ; Kilina S; Tretiak S; Htoon H; Therien MJ; Doorn SK
    ACS Nano; 2018 Aug; 12(8):8060-8070. PubMed ID: 29995379
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bright and dark excitons in semiconductor carbon nanotubes: insights from electronic structure calculations.
    Kilina S; Badaeva E; Piryatinski A; Tretiak S; Saxena A; Bishop AR
    Phys Chem Chem Phys; 2009 Jun; 11(21):4113-23. PubMed ID: 19458812
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.