These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
165 related articles for article (PubMed ID: 25265363)
1. In situ synthesis of poly(ionic liquid)-Pt nanoparticle composite in glass capillary for the electrocatalytic reduction of oxygen. Li M; Liu Y; Ding S; Zhu A; Shi G Analyst; 2014 Nov; 139(22):5964-9. PubMed ID: 25265363 [TBL] [Abstract][Full Text] [Related]
2. Ultra-fine Pt nanoparticles supported on ionic liquid polymer-functionalized ordered mesoporous carbons for nonenzymatic hydrogen peroxide detection. Bo X; Bai J; Qi B; Guo L Biosens Bioelectron; 2011 Oct; 28(1):77-83. PubMed ID: 21784627 [TBL] [Abstract][Full Text] [Related]
3. Boosting performance of low temperature fuel cell catalysts by subtle ionic liquid modification. Zhang GR; Munoz M; Etzold BJ ACS Appl Mater Interfaces; 2015 Feb; 7(6):3562-70. PubMed ID: 25621887 [TBL] [Abstract][Full Text] [Related]
4. Influence of the composition of core-shell Au-Pt nanoparticle electrocatalysts for the oxygen reduction reaction. Li X; Liu J; He W; Huang Q; Yang H J Colloid Interface Sci; 2010 Apr; 344(1):132-6. PubMed ID: 20060983 [TBL] [Abstract][Full Text] [Related]
5. A novel cobalt tetranitrophthalocyanine/graphene composite assembled by an in situ solvothermal synthesis method as a highly efficient electrocatalyst for the oxygen reduction reaction in alkaline medium. Lv G; Cui L; Wu Y; Liu Y; Pu T; He X Phys Chem Chem Phys; 2013 Aug; 15(31):13093-100. PubMed ID: 23820483 [TBL] [Abstract][Full Text] [Related]
6. Designed synthesis of well-defined Pd@Pt core-shell nanoparticles with controlled shell thickness as efficient oxygen reduction electrocatalysts. Choi R; Choi SI; Choi CH; Nam KM; Woo SI; Park JT; Han SW Chemistry; 2013 Jun; 19(25):8190-8. PubMed ID: 23613263 [TBL] [Abstract][Full Text] [Related]
7. Pt-encapsulated Pd-Co nanoalloy electrocatalysts for oxygen reduction reaction in fuel cells. Sarkar A; Murugan AV; Manthiram A Langmuir; 2010 Feb; 26(4):2894-903. PubMed ID: 20141217 [TBL] [Abstract][Full Text] [Related]
8. Low-Pt loaded on a vanadium nitride/graphitic carbon composite as an efficient electrocatalyst for the oxygen reduction reaction. Yin J; Wang L; Tian C; Tan T; Mu G; Zhao L; Fu H Chemistry; 2013 Oct; 19(41):13979-86. PubMed ID: 23960038 [TBL] [Abstract][Full Text] [Related]
9. Nanoscale Pt(0) particles prepared in imidazolium room temperature ionic liquids: synthesis from an organometallic precursor, characterization, and catalytic properties in hydrogenation reactions. Scheeren CW; Machado G; Dupont J; Fichtner PF; Texeira SR Inorg Chem; 2003 Jul; 42(15):4738-42. PubMed ID: 12870966 [TBL] [Abstract][Full Text] [Related]
11. Double-stimuli-responsive spherical polymer brushes with a poly(ionic liquid) core and a thermoresponsive shell. Men Y; Drechsler M; Yuan J Macromol Rapid Commun; 2013 Nov; 34(21):1721-7. PubMed ID: 24186465 [TBL] [Abstract][Full Text] [Related]
12. Bimetallic Pt-Au nanocatalysts electrochemically deposited on graphene and their electrocatalytic characteristics towards oxygen reduction and methanol oxidation. Hu Y; Zhang H; Wu P; Zhang H; Zhou B; Cai C Phys Chem Chem Phys; 2011 Mar; 13(9):4083-94. PubMed ID: 21229152 [TBL] [Abstract][Full Text] [Related]
13. Optimum nanoparticles for electrocatalytic oxygen reduction: the size, shape and new design. Wei GF; Liu ZP Phys Chem Chem Phys; 2013 Nov; 15(42):18555-61. PubMed ID: 24077215 [TBL] [Abstract][Full Text] [Related]
14. Electrochemical synthesis and electrocatalytic properties of Au@Pt dendrimer-encapsulated nanoparticles. Yancey DF; Carino EV; Crooks RM J Am Chem Soc; 2010 Aug; 132(32):10988-9. PubMed ID: 20698651 [TBL] [Abstract][Full Text] [Related]
15. Poly(ionic liquid)-coated hydroxy-functionalized carbon nanotube nanoarchitectures with boosted catalytic performance for carbon dioxide cycloaddition. Wan YL; Zhang J; Wang L; Lei YZ; Wen LL J Colloid Interface Sci; 2024 Jan; 653(Pt A):844-856. PubMed ID: 37769363 [TBL] [Abstract][Full Text] [Related]
16. In-situ confined growth of monodisperse pt nanoparticle@graphene nanobox composites as electrocatalytic nanoreactors. Lv Y; Fang Y; Wu Z; Qian X; Song Y; Che R; Asiri AM; Xia Y; Tu B; Zhao D Small; 2015 Feb; 11(8):1003-10. PubMed ID: 25331302 [TBL] [Abstract][Full Text] [Related]
17. Enhanced oxygen reduction at Pd catalytic nanoparticles dispersed onto heteropolytungstate-assembled poly(diallyldimethylammonium)-functionalized carbon nanotubes. Wang D; Lu S; Kulesza PJ; Li CM; De Marco R; Jiang SP Phys Chem Chem Phys; 2011 Mar; 13(10):4400-10. PubMed ID: 21249246 [TBL] [Abstract][Full Text] [Related]
18. Synthesis of conductive rutile-phased Nb0.06Ti0.94O2 and its supported Pt electrocatalysts (Pt/Nb0.06Ti0.94O2) for the oxygen reduction reaction. Wang YJ; Wilkinson DP; Zhang J Dalton Trans; 2012 Jan; 41(4):1187-94. PubMed ID: 22119794 [TBL] [Abstract][Full Text] [Related]
19. Direct growth of single-crystal Pt nanowires on Sn@CNT Nanocable: 3D electrodes for highly active electrocatalysts. Sun S; Zhang G; Geng D; Chen Y; Banis MN; Li R; Cai M; Sun X Chemistry; 2010 Jan; 16(3):829-35. PubMed ID: 20024993 [TBL] [Abstract][Full Text] [Related]