These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
167 related articles for article (PubMed ID: 25265389)
1. Computer-aided design of dry powder inhalers using computational fluid dynamics to assess performance. Suwandecha T; Wongpoowarak W; Srichana T Pharm Dev Technol; 2016; 21(1):54-60. PubMed ID: 25265389 [TBL] [Abstract][Full Text] [Related]
2. Potential and constraints for the application of CFD combined with Lagrangian particle tracking to dry powder inhalers. Sommerfeld M; Cui Y; Schmalfuß S Eur J Pharm Sci; 2019 Feb; 128():299-324. PubMed ID: 30553814 [TBL] [Abstract][Full Text] [Related]
3. Importance of powder residence time for the aerosol delivery performance of a commercial dry powder inhaler Aerolizer(®). Jiang L; Tang Y; Zhang H; Lu X; Chen X; Zhu J J Aerosol Med Pulm Drug Deliv; 2012 Oct; 25(5):265-79. PubMed ID: 22280548 [TBL] [Abstract][Full Text] [Related]
4. An insight into powder entrainment and drug delivery mechanisms from a modified Rotahaler®. Sim S; Margo K; Parks J; Howell R; Hebbink GA; Orlando L; Larson I; Leslie P; Ho L; Morton DA Int J Pharm; 2014 Dec; 477(1-2):351-60. PubMed ID: 25196720 [TBL] [Abstract][Full Text] [Related]
5. Effect of design on the performance of a dry powder inhaler using computational fluid dynamics. Part 1: Grid structure and mouthpiece length. Coates MS; Fletcher DF; Chan HK; Raper JA J Pharm Sci; 2004 Nov; 93(11):2863-76. PubMed ID: 15389665 [TBL] [Abstract][Full Text] [Related]
6. Development of a New Inhaler for High-Efficiency Dispersion of Spray-Dried Powders Using Computational Fluid Dynamics (CFD) Modeling. Longest W; Farkas D AAPS J; 2019 Feb; 21(2):25. PubMed ID: 30734133 [TBL] [Abstract][Full Text] [Related]
7. The use of computational fluid dynamics in inhaler design. Ruzycki CA; Javaheri E; Finlay WH Expert Opin Drug Deliv; 2013 Mar; 10(3):307-23. PubMed ID: 23289401 [TBL] [Abstract][Full Text] [Related]
9. Optimizing Aerosolization Using Computational Fluid Dynamics in a Pediatric Air-Jet Dry Powder Inhaler. Bass K; Farkas D; Longest W AAPS PharmSciTech; 2019 Nov; 20(8):329. PubMed ID: 31676991 [TBL] [Abstract][Full Text] [Related]
10. Understanding the Different Effects of Inhaler Design on the Aerosol Performance of Drug-Only and Carrier-Based DPI Formulations. Part 1: Grid Structure. Leung CMS; Tong Z; Zhou QT; Chan JGY; Tang P; Sun S; Yang R; Chan HK AAPS J; 2016 Sep; 18(5):1159-1167. PubMed ID: 27161214 [TBL] [Abstract][Full Text] [Related]
11. Effect of device design on the in vitro performance and comparability for capsule-based dry powder inhalers. Shur J; Lee S; Adams W; Lionberger R; Tibbatts J; Price R AAPS J; 2012 Dec; 14(4):667-76. PubMed ID: 22723022 [TBL] [Abstract][Full Text] [Related]
12. Effects of the mouthpiece and chamber of Turbuhaler® on the aerosolization of API-only powder formulations. Zhu Q; Gou D; Chan HK; Kourmatzis A; Yang R Int J Pharm; 2023 Apr; 637():122871. PubMed ID: 36948474 [TBL] [Abstract][Full Text] [Related]
13. Use of Computational Fluid Dynamics (CFD) Dispersion Parameters in the Development of a New DPI Actuated with Low Air Volumes. Longest W; Farkas D; Bass K; Hindle M Pharm Res; 2019 May; 36(8):110. PubMed ID: 31139939 [TBL] [Abstract][Full Text] [Related]
14. The clinical relevance of dry powder inhaler performance for drug delivery. Demoly P; Hagedoorn P; de Boer AH; Frijlink HW Respir Med; 2014 Aug; 108(8):1195-203. PubMed ID: 24929253 [TBL] [Abstract][Full Text] [Related]
15. CFD-DEM investigation of the effects of aperture size for a capsule-based dry powder inhaler. Zhu Q; Kakhi M; Jayasundara C; Walenga R; Behara SRB; Chan HK; Yang R Int J Pharm; 2023 Nov; 647():123556. PubMed ID: 37890648 [TBL] [Abstract][Full Text] [Related]
16. In vitro tests for aerosol deposition. III: effect of inhaler insertion angle on aerosol deposition. Delvadia RR; Longest PW; Hindle M; Byron PR J Aerosol Med Pulm Drug Deliv; 2013 Jun; 26(3):145-56. PubMed ID: 23025452 [TBL] [Abstract][Full Text] [Related]
17. Discrete Modelling of Powder Dispersion in Dry Powder Inhalers - A Brief Review. Tong Z; Yu A; Chan HK; Yang R Curr Pharm Des; 2015; 21(27):3966-73. PubMed ID: 26290194 [TBL] [Abstract][Full Text] [Related]
18. Computational fluid dynamics (CFD) assisted performance evaluation of the Twincer™ disposable high-dose dry powder inhaler. de Boer AH; Hagedoorn P; Woolhouse R; Wynn E J Pharm Pharmacol; 2012 Sep; 64(9):1316-25. PubMed ID: 22881443 [TBL] [Abstract][Full Text] [Related]
19. Computational modelling and experimental validation of drug entrainment in a dry powder inhaler. Kopsch T; Murnane D; Symons D Int J Pharm; 2018 Dec; 553(1-2):37-46. PubMed ID: 30316002 [TBL] [Abstract][Full Text] [Related]
20. Deposition and fine particle production during dynamic flow in a dry powder inhaler: a CFD approach. Milenkovic J; Alexopoulos AH; Kiparissides C Int J Pharm; 2014 Jan; 461(1-2):129-36. PubMed ID: 24296048 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]