These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 25265581)

  • 1. Optimal design of superhydrophobic surfaces using a paraboloid microtexture.
    Tie L; Guo Z; Li W
    J Colloid Interface Sci; 2014 Dec; 436():19-28. PubMed ID: 25265581
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimal geometrical design for superhydrophobic surfaces: effects of a trapezoid microtexture.
    Li W; Cui XS; Fang GP
    Langmuir; 2010 Mar; 26(5):3194-202. PubMed ID: 20112932
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microtextured superhydrophobic surfaces: a thermodynamic analysis.
    Li W; Amirfazli A
    Adv Colloid Interface Sci; 2007 Apr; 132(2):51-68. PubMed ID: 17331459
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On the possibility of superhydrophobic behavior for hydrophilic materials.
    Cui XS; Li W
    J Colloid Interface Sci; 2010 Jul; 347(1):156-62. PubMed ID: 20417521
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anisotropic wetting properties on various shape of parallel grooved microstructure.
    Tie L; Guo Z; Liu W
    J Colloid Interface Sci; 2015 Sep; 453():142-150. PubMed ID: 25982937
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermodynamic analysis on wetting behavior of hierarchical structured superhydrophobic surfaces.
    Liu HH; Zhang HY; Li W
    Langmuir; 2011 May; 27(10):6260-7. PubMed ID: 21495711
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A thermodynamic approach for determining the contact angle hysteresis for superhydrophobic surfaces.
    Li W; Amirfazli A
    J Colloid Interface Sci; 2005 Dec; 292(1):195-201. PubMed ID: 15979631
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Anisotropic wetting behavior arising from superhydrophobic surfaces: parallel grooved structure.
    Li W; Fang G; Li Y; Qiao G
    J Phys Chem B; 2008 Jun; 112(24):7234-43. PubMed ID: 18491941
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Theoretical investigations on the superhydrophobicity of intrinsic hydrophilic surfaces with overhang microstructures.
    Xu P; Bai JR; Zhou P; Wang LL; Sun XN; Wei L; Zhou QF
    RSC Adv; 2022 Jan; 12(5):2701-2711. PubMed ID: 35425330
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Wetting on fractal superhydrophobic surfaces from "core-shell" particles: a comparison of theory and experiment.
    Synytska A; Ionov L; Grundke K; Stamm M
    Langmuir; 2009 Mar; 25(5):3132-6. PubMed ID: 19437778
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Droplet motion on designed microtextured superhydrophobic surfaces with tunable wettability.
    Fang G; Li W; Wang X; Qiao G
    Langmuir; 2008 Oct; 24(20):11651-60. PubMed ID: 18788770
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 3-D thermodynamic analysis of superhydrophobic surfaces.
    Yamamoto K; Ogata S
    J Colloid Interface Sci; 2008 Oct; 326(2):471-7. PubMed ID: 18684470
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Water super-repellent behavior of semicircular micro/nanostructured surfaces.
    Tie L; Guo Z; Liang Y; Liu W
    Nanoscale; 2019 Feb; 11(8):3725-3732. PubMed ID: 30742167
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Contact angle hysteresis of non-flattened-top micro/nanostructures.
    Moradi S; Englezos P; Hatzikiriakos SG
    Langmuir; 2014 Mar; 30(11):3274-84. PubMed ID: 24588357
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adhesion of liquid droplets to rough surfaces.
    Li R; Alizadeh A; Shang W
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Oct; 82(4 Pt 1):041608. PubMed ID: 21230288
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analytical modeling and thermodynamic analysis of robust superhydrophobic surfaces with inverse-trapezoidal microstructures.
    Im M; Im H; Lee JH; Yoon JB; Choi YK
    Langmuir; 2010 Nov; 26(22):17389-97. PubMed ID: 20879754
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mimicking natural superhydrophobic surfaces and grasping the wetting process: a review on recent progress in preparing superhydrophobic surfaces.
    Yan YY; Gao N; Barthlott W
    Adv Colloid Interface Sci; 2011 Dec; 169(2):80-105. PubMed ID: 21974918
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Progress in understanding wetting transitions on rough surfaces.
    Bormashenko E
    Adv Colloid Interface Sci; 2015 Aug; 222():92-103. PubMed ID: 24594103
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wetting transition and optimal design for microstructured surfaces with hydrophobic and hydrophilic materials.
    Park CI; Jeong HE; Lee SH; Cho HS; Suh KY
    J Colloid Interface Sci; 2009 Aug; 336(1):298-303. PubMed ID: 19426991
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaporation of droplets on superhydrophobic surfaces: surface roughness and small droplet size effects.
    Chen X; Ma R; Li J; Hao C; Guo W; Luk BL; Li SC; Yao S; Wang Z
    Phys Rev Lett; 2012 Sep; 109(11):116101. PubMed ID: 23005650
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.