These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 25265871)

  • 1. Desferrioxamine-caffeine (DFCAF) as a cell permeant moderator of the oxidative stress caused by iron overload.
    Alta EC; Goswami D; Machini MT; Silvestre DM; Nomura CS; Espósito BP
    Biometals; 2014 Dec; 27(6):1351-60. PubMed ID: 25265871
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Desferrioxamine-caffeine shows improved efficacy in chelating iron and depleting cancer stem cells.
    Li B; Espósito BP; Wang S; Zhang J; Xu M; Zhang S; Zhang Z; Liu S
    J Trace Elem Med Biol; 2019 Mar; 52():232-238. PubMed ID: 30732888
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Iron-chelating and free-radical scavenging activities of microwave-processed green tea in iron overload.
    Srichairatanakool S; Ounjaijean S; Thephinlap C; Khansuwan U; Phisalpong C; Fucharoen S
    Hemoglobin; 2006; 30(2):311-27. PubMed ID: 16798656
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanogel-DFO conjugates as a model to investigate pharmacokinetics, biodistribution, and iron chelation in vivo.
    Wang Y; Liu Z; Lin TM; Chanana S; Xiong MP
    Int J Pharm; 2018 Mar; 538(1-2):79-86. PubMed ID: 29341909
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Objectives and mechanism of iron chelation therapy.
    Hershko C; Link G; Konijn AM; Cabantchik ZI
    Ann N Y Acad Sci; 2005; 1054():124-35. PubMed ID: 16339658
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of the iron(III) chelator, desferrioxamine, on iron and transferrin uptake by the human malignant melanoma cell.
    Richardson D; Ponka P; Baker E
    Cancer Res; 1994 Feb; 54(3):685-9. PubMed ID: 8306330
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Triphenylphosphonium-desferrioxamine as a candidate mitochondrial iron chelator.
    Alta RYP; Vitorino HA; Goswami D; Terêsa Machini M; Espósito BP
    Biometals; 2017 Oct; 30(5):709-718. PubMed ID: 28770399
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ROS-triggered degradable iron-chelating nanogels: Safely improving iron elimination in vivo.
    Liu Z; Qiao J; Nagy T; Xiong MP
    J Control Release; 2018 Aug; 283():84-93. PubMed ID: 29792889
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Desferrioxamine and desferrioxamine-caffeine as carriers of aluminum and gallium to microbes via the Trojan Horse Effect.
    Huayhuaz JAA; Vitorino HA; Campos OS; Serrano SHP; Kaneko TM; Espósito BP
    J Trace Elem Med Biol; 2017 May; 41():16-22. PubMed ID: 28347458
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cell penetrating peptide (CPP)-conjugated desferrioxamine for enhanced neuroprotection: synthesis and in vitro evaluation.
    Goswami D; Machini MT; Silvestre DM; Nomura CS; Esposito BP
    Bioconjug Chem; 2014 Nov; 25(11):2067-80. PubMed ID: 25299707
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exploring the "iron shuttle" hypothesis in chelation therapy: effects of combined deferoxamine and deferiprone treatment in hypertransfused rats with labeled iron stores and in iron-loaded rat heart cells in culture.
    Link G; Konijn AM; Breuer W; Cabantchik ZI; Hershko C
    J Lab Clin Med; 2001 Aug; 138(2):130-8. PubMed ID: 11477380
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deferoxamine attenuates iron-induced oxidative stress and prevents mitochondrial aggregation and alpha-synuclein translocation in SK-N-SH cells in culture.
    Sangchot P; Sharma S; Chetsawang B; Porter J; Govitrapong P; Ebadi M
    Dev Neurosci; 2002; 24(2-3):143-53. PubMed ID: 12401952
    [TBL] [Abstract][Full Text] [Related]  

  • 13. HBED ligand: preclinical studies of a potential alternative to deferoxamine for treatment of chronic iron overload and acute iron poisoning.
    Bergeron RJ; Wiegand J; Brittenham GM
    Blood; 2002 Apr; 99(8):3019-26. PubMed ID: 11929795
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deferoxamine-induced neurite outgrowth and synapse formation in postnatal rat dorsal root ganglion (DRG) cell cultures.
    Nowicki M; Kosacka J; Spanel-Borowski K; Borlak J
    Eur J Cell Biol; 2009 Oct; 88(10):551-62. PubMed ID: 19581022
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conjugates of desferrioxamine B (DFOB) with derivatives of adamantane or with orally available chelators as potential agents for treating iron overload.
    Liu J; Obando D; Schipanski LG; Groebler LK; Witting PK; Kalinowski DS; Richardson DR; Codd R
    J Med Chem; 2010 Feb; 53(3):1370-82. PubMed ID: 20041672
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deferoxamine and Curcumin Loaded Nanocarriers Protect Against Rotenone-Induced Neurotoxicity.
    Mursaleen L; Somavarapu S; Zariwala MG
    J Parkinsons Dis; 2020; 10(1):99-111. PubMed ID: 31868679
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Iron chelators for the treatment of iron overload disease: relationship between structure, redox activity, and toxicity.
    Chaston TB; Richardson DR
    Am J Hematol; 2003 Jul; 73(3):200-10. PubMed ID: 12827659
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recent acquisitions in the management of iron overload.
    Franchini M
    Ann Hematol; 2005 Oct; 84(10):640-5. PubMed ID: 16025271
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of an iron (III) chelator, silybin, on the proliferation and cell cycle of Jurkat cells: a comparison with desferrioxamine.
    Gharagozloo M; Khoshdel Z; Amirghofran Z
    Eur J Pharmacol; 2008 Jul; 589(1-3):1-7. PubMed ID: 18619590
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of iron chelating and antioxidant potential of Epilobium hirsutum for the management of iron overload disease.
    Sheikh NA; Desai TR; Tirgar PR
    Biomed Pharmacother; 2017 May; 89():1353-1361. PubMed ID: 28320102
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.