BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 25265947)

  • 1. HDAC4 blocks autophagy to trigger podocyte injury: non-epigenetic action in diabetic nephropathy.
    Wei Q; Dong Z
    Kidney Int; 2014 Oct; 86(4):666-8. PubMed ID: 25265947
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Histone deacetylase 4 selectively contributes to podocyte injury in diabetic nephropathy.
    Wang X; Liu J; Zhen J; Zhang C; Wan Q; Liu G; Wei X; Zhang Y; Wang Z; Han H; Xu H; Bao C; Song Z; Zhang X; Li N; Yi F
    Kidney Int; 2014 Oct; 86(4):712-25. PubMed ID: 24717296
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Histone deacetylase 4 mediates high glucose-induced podocyte apoptosis via upregulation of calcineurin.
    Shi W; Huang Y; Zhao X; Xie Z; Dong W; Li R; Chen Y; Li Z; Wang W; Ye Z; Liu S; Zhang L; Liang X
    Biochem Biophys Res Commun; 2020 Dec; 533(4):1061-1068. PubMed ID: 33019979
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Silencing of Histone Deacetylase 9 Expression in Podocytes Attenuates Kidney Injury in Diabetic Nephropathy.
    Liu F; Zong M; Wen X; Li X; Wang J; Wang Y; Jiang W; Li X; Guo Z; Qi H
    Sci Rep; 2016 Sep; 6():33676. PubMed ID: 27633396
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cyclo-RGD Truncated Polymeric Nanoconstruct with Dendrimeric Templates for Targeted HDAC4 Gene Silencing in a Diabetic Nephropathy Mouse Model.
    Raval N; Jogi H; Gondaliya P; Kalia K; Tekade RK
    Mol Pharm; 2021 Feb; 18(2):641-666. PubMed ID: 32453574
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Valproate attenuates the proteinuria, podocyte and renal injury by facilitating autophagy and inactivation of NF-κB/iNOS signaling in diabetic rat.
    Khan S; Jena G; Tikoo K; Kumar V
    Biochimie; 2015 Mar; 110():1-16. PubMed ID: 25572918
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mangiferin prevents diabetic nephropathy progression and protects podocyte function via autophagy in diabetic rat glomeruli.
    Wang X; Gao L; Lin H; Song J; Wang J; Yin Y; Zhao J; Xu X; Li Z; Li L
    Eur J Pharmacol; 2018 Apr; 824():170-178. PubMed ID: 29444469
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Research Progress on the Pathological Mechanisms of Podocytes in Diabetic Nephropathy.
    Zhang L; Wen Z; Han L; Zheng Y; Wei Y; Wang X; Wang Q; Fang X; Zhao L; Tong X
    J Diabetes Res; 2020; 2020():7504798. PubMed ID: 32695831
    [TBL] [Abstract][Full Text] [Related]  

  • 9. PRMT1 mediates podocyte injury and glomerular fibrosis through phosphorylation of ERK pathway.
    Zhu Y
    Biochem Biophys Res Commun; 2018 Jan; 495(1):828-838. PubMed ID: 29129692
    [TBL] [Abstract][Full Text] [Related]  

  • 10. NLRP3 inflammasome negatively regulates podocyte autophagy in diabetic nephropathy.
    Hou Y; Lin S; Qiu J; Sun W; Dong M; Xiang Y; Wang L; Du P
    Biochem Biophys Res Commun; 2020 Jan; 521(3):791-798. PubMed ID: 31703838
    [TBL] [Abstract][Full Text] [Related]  

  • 11. FOXO3a accumulation and activation accelerate oxidative stress-induced podocyte injury.
    Chen X; Liu W; Xiao J; Zhang Y; Chen Y; Luo C; Huang Q; Peng F; Gong W; Li S; He X; Zhuang Y; Wu N; Liu Y; Wang Y; Long H
    FASEB J; 2020 Oct; 34(10):13300-13316. PubMed ID: 32786113
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Paecilomyces cicadae-fermented Radix astragali activates podocyte autophagy by attenuating PI3K/AKT/mTOR pathways to protect against diabetic nephropathy in mice.
    Yang F; Qu Q; Zhao C; Liu X; Yang P; Li Z; Han L; Shi X
    Biomed Pharmacother; 2020 Sep; 129():110479. PubMed ID: 32768963
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Growth hormone (GH)-dependent expression of a natural antisense transcript induces zinc finger E-box-binding homeobox 2 (ZEB2) in the glomerular podocyte: a novel action of gh with implications for the pathogenesis of diabetic nephropathy.
    Kumar PA; Kotlyarevska K; Dejkhmaron P; Reddy GR; Lu C; Bhojani MS; Menon RK
    J Biol Chem; 2010 Oct; 285(41):31148-56. PubMed ID: 20682777
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Glomerular mesangial cell and podocyte injuries in diabetic nephropathy.
    Tung CW; Hsu YC; Shih YH; Chang PJ; Lin CL
    Nephrology (Carlton); 2018 Oct; 23 Suppl 4():32-37. PubMed ID: 30298646
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exosome secreted from adipose-derived stem cells attenuates diabetic nephropathy by promoting autophagy flux and inhibiting apoptosis in podocyte.
    Jin J; Shi Y; Gong J; Zhao L; Li Y; He Q; Huang H
    Stem Cell Res Ther; 2019 Mar; 10(1):95. PubMed ID: 30876481
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Research Progress on Mechanism of Podocyte Depletion in Diabetic Nephropathy.
    Dai H; Liu Q; Liu B
    J Diabetes Res; 2017; 2017():2615286. PubMed ID: 28791309
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Podocyte hypertrophy in diabetic nephropathy.
    Kim NH
    Nephrology (Carlton); 2005 Oct; 10 Suppl():S14-6. PubMed ID: 16174280
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protection of CTGF Antibody Against Diabetic Nephropathy in Mice Via Reducing Glomerular β-Catenin Expression and Podocyte Epithelial-Mesenchymal Transition.
    Dai HY; Ma LN; Cao Y; Chen XL; Shi H; Fan YP; Yang B
    J Cell Biochem; 2017 Nov; 118(11):3706-3712. PubMed ID: 28370212
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Method and its Composition for encapsulation, stabilization, and delivery of siRNA in Anionic polymeric nanoplex: An In vitro- In vivo Assessment.
    Raval N; Jogi H; Gondaliya P; Kalia K; Tekade RK
    Sci Rep; 2019 Nov; 9(1):16047. PubMed ID: 31690769
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wnt signaling and podocyte dysfunction in diabetic nephropathy.
    Bose M; Almas S; Prabhakar S
    J Investig Med; 2017 Dec; 65(8):1093-1101. PubMed ID: 28935636
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.