These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 25266261)

  • 1. Motor imagery, P300 and error-related EEG-based robot arm movement control for rehabilitation purpose.
    Bhattacharyya S; Konar A; Tibarewala DN
    Med Biol Eng Comput; 2014 Dec; 52(12):1007-17. PubMed ID: 25266261
    [TBL] [Abstract][Full Text] [Related]  

  • 2. EEG error potentials detection and classification using time-frequency features for robot reinforcement learning.
    Boubchir L; Touati Y; Daachi B; Chérif AA
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():1761-4. PubMed ID: 26736619
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Low-Cost Robotic Guide Based on a Motor Imagery Brain-Computer Interface for Arm Assisted Rehabilitation.
    Quiles E; Suay F; Candela G; Chio N; Jiménez M; Álvarez-Kurogi L
    Int J Environ Res Public Health; 2020 Jan; 17(3):. PubMed ID: 31973155
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unimanual Versus Bimanual Motor Imagery Classifiers for Assistive and Rehabilitative Brain Computer Interfaces.
    Vuckovic A; Pangaro S; Finda P
    IEEE Trans Neural Syst Rehabil Eng; 2018 Dec; 26(12):2407-2415. PubMed ID: 30371375
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel motor imagery hybrid brain computer interface using EEG and functional transcranial Doppler ultrasound.
    Khalaf A; Sejdic E; Akcakaya M
    J Neurosci Methods; 2019 Feb; 313():44-53. PubMed ID: 30590086
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Motor imagery EEG classification based on ensemble support vector learning.
    Luo J; Gao X; Zhu X; Wang B; Lu N; Wang J
    Comput Methods Programs Biomed; 2020 Sep; 193():105464. PubMed ID: 32283387
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bypassing the Natural Visual-Motor Pathway to Execute Complex Movement Related Tasks Using Interval Type-2 Fuzzy Sets.
    Khasnobish A; Konar A; Tibarewala DN; Nagar AK
    IEEE Trans Neural Syst Rehabil Eng; 2017 Jan; 25(1):88-102. PubMed ID: 27323367
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Classification of multi-class motor imagery with a novel hierarchical SVM algorithm for brain-computer interfaces.
    Dong E; Li C; Li L; Du S; Belkacem AN; Chen C
    Med Biol Eng Comput; 2017 Oct; 55(10):1809-1818. PubMed ID: 28238175
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On the feasibility of using motor imagery EEG-based brain-computer interface in chronic tetraplegics for assistive robotic arm control: a clinical test and long-term post-trial follow-up.
    Onose G; Grozea C; Anghelescu A; Daia C; Sinescu CJ; Ciurea AV; Spircu T; Mirea A; Andone I; Spânu A; Popescu C; Mihăescu AS; Fazli S; Danóczy M; Popescu F
    Spinal Cord; 2012 Aug; 50(8):599-608. PubMed ID: 22410845
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Error-related EEG potentials generated during simulated brain-computer interaction.
    Ferrez PW; del R Millan J
    IEEE Trans Biomed Eng; 2008 Mar; 55(3):923-9. PubMed ID: 18334383
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Vision-aided brain-machine interface training system for robotic arm control and clinical application on two patients with cervical spinal cord injury.
    Kim YJ; Nam HS; Lee WH; Seo HG; Leigh JH; Oh BM; Bang MS; Kim S
    Biomed Eng Online; 2019 Feb; 18(1):14. PubMed ID: 30744661
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A study on a robot arm driven by three-dimensional trajectories predicted from non-invasive neural signals.
    Kim YJ; Park SW; Yeom HG; Bang MS; Kim JS; Chung CK; Kim S
    Biomed Eng Online; 2015 Aug; 14():81. PubMed ID: 26290069
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative Study of SSVEP- and P300-Based Models for the Telepresence Control of Humanoid Robots.
    Zhao J; Li W; Li M
    PLoS One; 2015; 10(11):e0142168. PubMed ID: 26562524
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Feature selection using regularized neighbourhood component analysis to enhance the classification performance of motor imagery signals.
    Malan NS; Sharma S
    Comput Biol Med; 2019 Apr; 107():118-126. PubMed ID: 30802693
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of a robust asynchronous brain-switch using ErrP-based error correction.
    Yousefi R; Rezazadeh Sereshkeh A; Chau T
    J Neural Eng; 2019 Nov; 16(6):066042. PubMed ID: 31571608
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Android Feedback-Based Training Modulates Sensorimotor Rhythms During Motor Imagery.
    Penaloza CI; Alimardani M; Nishio S
    IEEE Trans Neural Syst Rehabil Eng; 2018 Mar; 26(3):666-674. PubMed ID: 29522410
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bridging the gap between motor imagery and motor execution with a brain-robot interface.
    Bauer R; Fels M; Vukelić M; Ziemann U; Gharabaghi A
    Neuroimage; 2015 Mar; 108():319-27. PubMed ID: 25527239
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prediction of cognitive conflict during unexpected robot behavior under different mental workload conditions in a physical human-robot collaboration.
    John AR; Singh AK; Gramann K; Liu D; Lin CT
    J Neural Eng; 2024 Mar; 21(2):. PubMed ID: 38295415
    [No Abstract]   [Full Text] [Related]  

  • 19. EEG oscillatory patterns and classification of sequential compound limb motor imagery.
    Yi W; Qiu S; Wang K; Qi H; He F; Zhou P; Zhang L; Ming D
    J Neuroeng Rehabil; 2016 Jan; 13():11. PubMed ID: 26822435
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reconstruction of hand, elbow and shoulder actual and imagined trajectories in 3D space using EEG slow cortical potentials.
    Sosnik R; Ben Zur O
    J Neural Eng; 2020 Feb; 17(1):016065. PubMed ID: 31747655
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.