These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 25266461)

  • 1. Spatial differences in corneal electroretinogram potentials measured in rat with a contact lens electrode array.
    Krakova Y; Tajalli H; Thongpang S; Derafshi Z; Ban T; Rahmani S; Selner AN; Al-Tarouti A; Williams JC; Hetling JR
    Doc Ophthalmol; 2014 Dec; 129(3):151-66. PubMed ID: 25266461
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Corneal Potential Maps Measured With Multi-Electrode Electroretinography in Rat Eyes With Experimental Lesions.
    Derafshi Z; Kunzer BE; Mugler EM; Rokhmanova N; Park DW; Tajalli H; Shetty K; Ma Z; Williams JC; Hetling JR
    Invest Ophthalmol Vis Sci; 2017 Jun; 58(7):2863-2873. PubMed ID: 28586910
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Comparison between subtraction skin electrodes and corneal-contact electrodes in flash electroretinograms].
    Kaid T; Matsunag M; Hanaya J; Nakamura Y; Ohtani S; Miyat K; Kondo M
    Nippon Ganka Gakkai Zasshi; 2013 Jan; 117(1):5-11. PubMed ID: 23424970
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Visualizing spatial differences in corneal electroretinogram potentials using a three-dimensional surface spline.
    Kunzer BE; Derafshi Z; Hetling JR
    J Neural Eng; 2021 Sep; 18(5):. PubMed ID: 34433154
    [No Abstract]   [Full Text] [Related]  

  • 5. Evaluation of different recording parameters to establish a standard for flash electroretinography in rodents.
    Bayer AU; Cook P; Brodie SE; Maag KP; Mittag T
    Vision Res; 2001 Aug; 41(17):2173-85. PubMed ID: 11448710
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Three-Dimensional Model of Electroretinogram Field Potentials in the Rat Eye.
    Selner AN; Derafshi Z; Kunzer BE; Hetling JR
    IEEE Trans Biomed Eng; 2018 Dec; 65(12):2781-2789. PubMed ID: 29993425
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Qualitative and quantitative comparison of ERGs with contact lens and adhesive skin electrodes.
    Chen D; Greenstein VC; Brodie SE
    Doc Ophthalmol; 2022 Jun; 144(3):203-215. PubMed ID: 35304683
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparisons of the amplitude size and the reproducibility of three different electrodes to record the corneal flash electroretinogram in rodents.
    Bayer AU; Mittag T; Cook P; Brodie SE; Podos SM; Maag KP
    Doc Ophthalmol; 1999; 98(3):233-46. PubMed ID: 10945443
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Noninvasive recording and response characteristics of the rat dc-electroretinogram.
    Peachey NS; Stanton JB; Marmorstein AD
    Vis Neurosci; 2002; 19(6):693-701. PubMed ID: 12688665
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Soft transparent graphene contact lens electrodes for conformal full-cornea recording of electroretinogram.
    Yin R; Xu Z; Mei M; Chen Z; Wang K; Liu Y; Tang T; Priydarshi MK; Meng X; Zhao S; Deng B; Peng H; Liu Z; Duan X
    Nat Commun; 2018 Jun; 9(1):2334. PubMed ID: 29899545
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accuracy and results of photopic flash electroretinogram performed with skin electrodes in infants.
    Bui Quoc E; Albuisson E; Ingster-Moati I
    Eur J Ophthalmol; 2012; 22(3):441-9. PubMed ID: 21748726
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of ERGs recorded with skin and corneal-contact electrodes in normal children and adults.
    Bradshaw K; Hansen R; Fulton A
    Doc Ophthalmol; 2004 Jul; 109(1):43-55. PubMed ID: 15675199
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [A procedure for recording electroretinogram (ERG) with a contact lens-type electrode, and effect of sodium iodate on ERG in rats].
    Sugimoto S; Imawaka M; Ozaki H; Ito T; Ando T; Sato S
    J Toxicol Sci; 1994 Nov; 19 Suppl 3():531-42. PubMed ID: 7837305
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of guinea pig electroretinograms measured with bipolar corneal and unipolar intravitreal electrodes.
    Bui BV; Weisinger HS; Sinclair AJ; Vingrys AJ
    Doc Ophthalmol; 1998; 95(1):15-34. PubMed ID: 10189179
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electroretinography by skin electrodes and signal averaging method.
    Mustonen E; Sulg I
    Acta Ophthalmol (Copenh); 1980 Jun; 58(3):388-96. PubMed ID: 7415827
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dark-adapted luminance-response functions with skin and corneal electrodes.
    Wali N; Leguire LE
    Doc Ophthalmol; 1991; 76(4):367-75. PubMed ID: 1935545
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improved contact lens electrode for corneal ERG recordings in mice.
    Sagdullaev BT; DeMarco PJ; McCall MA
    Doc Ophthalmol; 2004 May; 108(3):181-4. PubMed ID: 15573941
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Flash responses of mouse rod photoreceptors in the isolated retina and corneal electroretinogram: comparison of gain and kinetics.
    Heikkinen H; Vinberg F; Pitkänen M; Kommonen B; Koskelainen A
    Invest Ophthalmol Vis Sci; 2012 Aug; 53(9):5653-64. PubMed ID: 22743325
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electroretinography in dogs using a fiber electrode prototype.
    Pereira AL; Montiani-Ferreira F; Santos VR; Salomão SR; Souza C; Berezovsky A
    Braz J Med Biol Res; 2013 Mar; 46(3):257-62. PubMed ID: 23558860
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Validation of a new fiber electrode prototype for clinical electroretinography.
    Berezovsky A; Pereira JM; Salomão SR; Santos VR; Schor P
    Arq Bras Oftalmol; 2008; 71(3):316-20. PubMed ID: 18641814
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.