These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
151 related articles for article (PubMed ID: 25266500)
21. Origami paper-based sample preconcentration using sequentially driven ion concentration polarization. Lee J; Yoo YK; Lee D; Kim C; Kim KH; Lee S; Kwak S; Kang JY; Kim H; Yoon DS; Hur D; Lee JH Lab Chip; 2021 Mar; 21(5):867-874. PubMed ID: 33507198 [TBL] [Abstract][Full Text] [Related]
22. Interconnected ordered nanoporous networks of colloidal crystals integrated on a microfluidic chip for highly efficient protein concentration. Hu YL; Wang C; Wu ZQ; Xu JJ; Chen HY; Xia XH Electrophoresis; 2011 Nov; 32(23):3424-30. PubMed ID: 22057434 [TBL] [Abstract][Full Text] [Related]
23. Effects of microchannel geometry on preconcentration intensity in microfluidic chips with straight or convergent-divergent microchannels. Chen CL; Yang RJ Electrophoresis; 2012 Mar; 33(5):751-7. PubMed ID: 22522531 [TBL] [Abstract][Full Text] [Related]
24. Rapid pre-concentration of Escherichia coli in a microfluidic paper-based device using ion concentration polarization. Perera ATK; Pudasaini S; Ahmed SSU; Phan DT; Liu Y; Yang C Electrophoresis; 2020 Jun; 41(10-11):867-874. PubMed ID: 31667875 [TBL] [Abstract][Full Text] [Related]
25. Electroosmotic flow analysis of a branched U-turn nanofluidic device. Parikesit GO; Markesteijn AP; Kutchoukov VG; Piciu O; Bossche A; Westerweel J; Garini Y; Young IT Lab Chip; 2005 Oct; 5(10):1067-74. PubMed ID: 16175262 [TBL] [Abstract][Full Text] [Related]
26. In situ generation of pH gradients in microfluidic devices for biofabrication of freestanding, semi-permeable chitosan membranes. Luo X; Berlin DL; Betz J; Payne GF; Bentley WE; Rubloff GW Lab Chip; 2010 Jan; 10(1):59-65. PubMed ID: 20024051 [TBL] [Abstract][Full Text] [Related]
27. Sample pre-concentration with high enrichment factors at a fixed location in paper-based microfluidic devices. Yeh SH; Chou KH; Yang RJ Lab Chip; 2016 Mar; 16(5):925-31. PubMed ID: 26876347 [TBL] [Abstract][Full Text] [Related]
28. Concentration landscape generators for shear free dynamic chemical stimulation. Morel M; Galas JC; Dahan M; Studer V Lab Chip; 2012 Apr; 12(7):1340-6. PubMed ID: 22344388 [TBL] [Abstract][Full Text] [Related]
29. Microfluidic protein preconcentrator using a microchannel-integrated nafion strip: experiment and modeling. Shen M; Yang H; Sivagnanam V; Gijs MA Anal Chem; 2010 Dec; 82(24):9989-97. PubMed ID: 20964443 [TBL] [Abstract][Full Text] [Related]
31. Effect of multivalent ions on electroosmotic flow in micro- and nanochannels. Zheng Z; Hansford DJ; Conlisk AT Electrophoresis; 2003 Sep; 24(17):3006-17. PubMed ID: 12973804 [TBL] [Abstract][Full Text] [Related]
32. Open-channel chip-based solid-phase extraction combined with inductively coupled plasma-mass spectrometry for online determination of trace elements in volume-limited saline samples. Shih TT; Chen WY; Sun YC J Chromatogr A; 2011 Apr; 1218(16):2342-8. PubMed ID: 21392771 [TBL] [Abstract][Full Text] [Related]
33. Protein synthesis in a device with nanoporous membranes and microchannels. Mei Q; Khnouf R; Simon A; Fan ZH Lab Chip; 2010 Oct; 10(19):2541-5. PubMed ID: 20730191 [TBL] [Abstract][Full Text] [Related]
34. The influence of membrane ion-permselectivity on electrokinetic concentration enrichment in membrane-based preconcentration units. Hlushkou D; Dhopeshwarkar R; Crooks RM; Tallarek U Lab Chip; 2008 Jul; 8(7):1153-62. PubMed ID: 18584092 [TBL] [Abstract][Full Text] [Related]
35. A microscopic physical description of electrothermal-induced flow for control of ion current transport in microfluidics interfacing nanofluidics. Liu W; Ren Y; Chen F; Song J; Tao Y; Du K; Wu Q Electrophoresis; 2019 Oct; 40(20):2683-2698. PubMed ID: 30883820 [TBL] [Abstract][Full Text] [Related]
36. A multi-layer microfluidic device for efficient culture and analysis of renal tubular cells. Jang KJ; Suh KY Lab Chip; 2010 Jan; 10(1):36-42. PubMed ID: 20024048 [TBL] [Abstract][Full Text] [Related]
37. Development of a low flow-resistive charged nanoporous membrane in a microchip for fast electropreconcentration. Chun H Electrophoresis; 2018 Sep; 39(17):2181-2187. PubMed ID: 29896779 [TBL] [Abstract][Full Text] [Related]
38. Engineering and analysis of surface interactions in a microfluidic herringbone micromixer. Forbes TP; Kralj JG Lab Chip; 2012 Aug; 12(15):2634-7. PubMed ID: 22706612 [TBL] [Abstract][Full Text] [Related]
39. Nanoporous platinum solid-state reference electrode with layer-by-layer polyelectrolyte junction for pH sensing chip. Noh J; Park S; Boo H; Kim HC; Chung TD Lab Chip; 2011 Feb; 11(4):664-71. PubMed ID: 21135953 [TBL] [Abstract][Full Text] [Related]
40. A water-activated pump for portable microfluidic applications. Good BT; Bowman CN; Davis RH J Colloid Interface Sci; 2007 Jan; 305(2):239-49. PubMed ID: 17081553 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]