These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
237 related articles for article (PubMed ID: 25266627)
1. Determination of the axial and circumferential mechanical properties of the skin tissue using experimental testing and constitutive modeling. Karimi A; Navidbakhsh M; Haghighatnama M; Haghi AM Comput Methods Biomech Biomed Engin; 2015; 18(16):1768-74. PubMed ID: 25266627 [TBL] [Abstract][Full Text] [Related]
2. Measurement of the axial and circumferential mechanical properties of rat skin tissue at different anatomical locations. Karimi A; Haghighatnama M; Navidbakhsh M; Haghi AM Biomed Tech (Berl); 2015 Apr; 60(2):115-22. PubMed ID: 25389978 [TBL] [Abstract][Full Text] [Related]
3. Experimental Bi-axial tensile tests of spinal meningeal tissues and constitutive models comparison. Evin M; Sudres P; Weber P; Godio-Raboutet Y; Arnoux PJ; Wagnac E; Petit Y; Tillier Y Acta Biomater; 2022 Mar; 140():446-456. PubMed ID: 34838701 [TBL] [Abstract][Full Text] [Related]
4. Measurement of the uniaxial mechanical properties of rat skin using different stress-strain definitions. Karimi A; Navidbakhsh M Skin Res Technol; 2015 May; 21(2):149-57. PubMed ID: 25078795 [TBL] [Abstract][Full Text] [Related]
5. Mechanical characterization of the rat and mice skin tissues using histostructural and uniaxial data. Karimi A; Rahmati SM; Navidbakhsh M Bioengineered; 2015; 6(3):153-60. PubMed ID: 25837446 [TBL] [Abstract][Full Text] [Related]
6. Re-examination of the mechanical anisotropy of porcine thoracic aorta by uniaxial tensile tests. Chen Q; Wang Y; Li ZY Biomed Eng Online; 2016 Dec; 15(Suppl 2):167. PubMed ID: 28155705 [TBL] [Abstract][Full Text] [Related]
7. Mechanical characterization of human brain tissue. Budday S; Sommer G; Birkl C; Langkammer C; Haybaeck J; Kohnert J; Bauer M; Paulsen F; Steinmann P; Kuhl E; Holzapfel GA Acta Biomater; 2017 Jan; 48():319-340. PubMed ID: 27989920 [TBL] [Abstract][Full Text] [Related]
9. Biomechanical properties of the human superficial fascia: Site-specific variability and anisotropy of abdominal and thoracic regions. Berardo A; Bonaldi L; Stecco C; Fontanella CG J Mech Behav Biomed Mater; 2024 Sep; 157():106637. PubMed ID: 38914036 [TBL] [Abstract][Full Text] [Related]
10. Investigation of the mechanical behaviour of the foot skin. Fontanella CG; Carniel EL; Forestiero A; Natali AN Skin Res Technol; 2014 Nov; 20(4):445-52. PubMed ID: 24527962 [TBL] [Abstract][Full Text] [Related]
11. Experimental testing and constitutive modeling of the mechanical properties of the swine skin tissue. Łagan SD; Liber-Kneć A Acta Bioeng Biomech; 2017; 19(2):93-102. PubMed ID: 28869629 [TBL] [Abstract][Full Text] [Related]
12. Human annulus fibrosus material properties from biaxial testing and constitutive modeling are altered with degeneration. O'Connell GD; Sen S; Elliott DM Biomech Model Mechanobiol; 2012 Mar; 11(3-4):493-503. PubMed ID: 21748426 [TBL] [Abstract][Full Text] [Related]
13. An Experimental Study to Measure the Mechanical Properties of the Human Liver. Karimi A; Shojaei A Dig Dis; 2018; 36(2):150-155. PubMed ID: 29131053 [TBL] [Abstract][Full Text] [Related]
14. Anisotropic and strain rate-dependent mechanical properties and constitutive modeling of the cancellous bone from piglet cervical vertebrae. Li Z; Wang J; Song G; Ji C; Han X Comput Methods Programs Biomed; 2020 May; 188():105279. PubMed ID: 31865093 [TBL] [Abstract][Full Text] [Related]
15. Mechanical characterisation of human and porcine scalp tissue at dynamic strain rates. Trotta A; Ní Annaidh A J Mech Behav Biomed Mater; 2019 Dec; 100():103381. PubMed ID: 31430703 [TBL] [Abstract][Full Text] [Related]
16. Material properties in unconfined compression of gelatin hydrogel for skin tissue engineering applications. Karimi A; Navidbakhsh M Biomed Tech (Berl); 2014 Dec; 59(6):479-86. PubMed ID: 24988278 [TBL] [Abstract][Full Text] [Related]
17. Theoretical and uniaxial experimental evaluation of human annulus fibrosus degeneration. O'Connell GD; Guerin HL; Elliott DM J Biomech Eng; 2009 Nov; 131(11):111007. PubMed ID: 20353258 [TBL] [Abstract][Full Text] [Related]
18. The role of smoking on the mechanical properties of the human lung. Karimi A; Razaghi R Technol Health Care; 2018; 26(6):963-972. PubMed ID: 30103357 [TBL] [Abstract][Full Text] [Related]
19. Experimental study and constitutive modelling of the passive mechanical properties of the porcine carotid artery and its relation to histological analysis: Implications in animal cardiovascular device trials. García A; Peña E; Laborda A; Lostalé F; De Gregorio MA; Doblaré M; Martínez MA Med Eng Phys; 2011 Jul; 33(6):665-76. PubMed ID: 21371929 [TBL] [Abstract][Full Text] [Related]
20. A Combination of Constitutive Damage Model and Artificial Neural Networks to Characterize the Mechanical Properties of the Healthy and Atherosclerotic Human Coronary Arteries. Karimi A; Rahmati SM; Sera T; Kudo S; Navidbakhsh M Artif Organs; 2017 Sep; 41(9):E103-E117. PubMed ID: 28150399 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]