These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

258 related articles for article (PubMed ID: 25266779)

  • 1. Slow-light-enhanced gain in active photonic crystal waveguides.
    Ek S; Lunnemann P; Chen Y; Semenova E; Yvind K; Mork J
    Nat Commun; 2014 Sep; 5():5039. PubMed ID: 25266779
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Active control of slow light on a chip with photonic crystal waveguides.
    Vlasov YA; O'Boyle M; Hamann HF; McNab SJ
    Nature; 2005 Nov; 438(7064):65-9. PubMed ID: 16267549
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Theory of carrier depletion and light amplification in active slow light photonic crystal waveguides.
    Chen Y; Mørk J
    Opt Express; 2013 Dec; 21(24):29392-400. PubMed ID: 24514493
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Slow light enhanced correlated photon pair generation in photonic-crystal coupled-resonator optical waveguides.
    Matsuda N; Takesue H; Shimizu K; Tokura Y; Kuramochi E; Notomi M
    Opt Express; 2013 Apr; 21(7):8596-604. PubMed ID: 23571949
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Slow light and chromatic temporal dispersion in photonic crystal waveguides using femtosecond time of flight.
    Finlayson CE; Cattaneo F; Perney NM; Baumberg JJ; Netti MC; Zoorob ME; Charlton MD; Parker GJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jan; 73(1 Pt 2):016619. PubMed ID: 16486307
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design of a low-power all-optical NOR gate using photonic crystal quantum-dot semiconductor optical amplifiers.
    Taleb H; Abedi K
    Opt Lett; 2014 Nov; 39(21):6237-40. PubMed ID: 25361323
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On the use of slow light for enhancing waveguide properties.
    Mørk J; Nielsen TR
    Opt Lett; 2010 Sep; 35(17):2834-6. PubMed ID: 20808340
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultra slow light achievement in photonic crystals by merging coupled cavities with waveguides.
    Ustün K; Kurt H
    Opt Express; 2010 Sep; 18(20):21155-61. PubMed ID: 20941012
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental realization of highly efficient broadband coupling of single quantum dots to a photonic crystal waveguide.
    Lund-Hansen T; Stobbe S; Julsgaard B; Thyrrestrup H; Sünner T; Kamp M; Forchel A; Lodahl P
    Phys Rev Lett; 2008 Sep; 101(11):113903. PubMed ID: 18851282
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficient propagation of TM polarized light in photonic crystal components exhibiting band gaps for TE polarized light.
    Borel P; Frandsen L; Thorhauge M; Harpøth A; Zhuang Y; Kristensen M; Chong H
    Opt Express; 2003 Jul; 11(15):1757-62. PubMed ID: 19466056
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Slow light engineering in resonant photonic crystal line-defect waveguides.
    Moghaddam MK; Fleury R
    Opt Express; 2019 Sep; 27(18):26229-26238. PubMed ID: 31510481
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Wideband slow light in chirped slot photonic-crystal coupled waveguides.
    Hou J; Wu H; Citrin DS; Mo W; Gao D; Zhou Z
    Opt Express; 2010 May; 18(10):10567-80. PubMed ID: 20588909
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Backscattering and disorder limits in slow light photonic crystal waveguides.
    Petrov A; Krause M; Eich M
    Opt Express; 2009 May; 17(10):8676-84. PubMed ID: 19434201
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modal theory of slow light enhanced third-order nonlinear effects in photonic crystal waveguides.
    Chen T; Sun J; Li L
    Opt Express; 2012 Aug; 20(18):20043-58. PubMed ID: 23037057
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fabrication and characterization of photonic crystal slow light waveguides and cavities.
    Reardon CP; Rey IH; Welna K; O'Faolain L; Krauss TF
    J Vis Exp; 2012 Nov; (69):e50216. PubMed ID: 23222804
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direct slow-light excitation in photonic crystal waveguides forming ultra-compact splitters.
    Zhang M; Groothoff N; Krüger AC; Shi P; Kristensen M
    Opt Express; 2011 Apr; 19(8):7120-6. PubMed ID: 21503025
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photonic linear chirped microwave signal generation based on the ultra-compact spectral shaper using the slow light effect.
    Yan S; Gao S; Zhou F; Ding Y; Dong J; Cai X; Zhang X
    Opt Lett; 2017 Sep; 42(17):3299-3302. PubMed ID: 28957088
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photonic crystal slow light waveguides in a kagome lattice.
    Schulz SA; Upham J; O'Faolain L; Boyd RW
    Opt Lett; 2017 Aug; 42(16):3243-3246. PubMed ID: 28809919
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Theory of slow-light semiconductor optical amplifiers.
    Saldutti M; Rasmussen TS; Gioannini M; Mørk J
    Opt Lett; 2020 Nov; 45(21):6022-6025. PubMed ID: 33137059
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Observation of slow light in glide-symmetric photonic-crystal waveguides.
    Murendranath Patil C; Arregui G; Mechlenborg M; Zhou X; Alaeian H; David García P; Stobbe S
    Opt Express; 2022 Apr; 30(8):12565-12575. PubMed ID: 35472890
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.