These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

308 related articles for article (PubMed ID: 25267303)

  • 1. Shifting the metallocentric molybdoenzyme paradigm: the importance of pyranopterin coordination.
    Rothery RA; Weiner JH
    J Biol Inorg Chem; 2015 Mar; 20(2):349-72. PubMed ID: 25267303
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pyranopterin conformation defines the function of molybdenum and tungsten enzymes.
    Rothery RA; Stein B; Solomonson M; Kirk ML; Weiner JH
    Proc Natl Acad Sci U S A; 2012 Sep; 109(37):14773-8. PubMed ID: 22927383
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oxo transfer reactions mediated by bis(dithiolene)tungsten analogues of the active sites of molybdoenzymes in the DMSO reductase family: comparative reactivity of tungsten and molybdenum.
    Sung KM; Holm RH
    J Am Chem Soc; 2001 Mar; 123(9):1931-43. PubMed ID: 11456814
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dimethylsulfoxide reductase: an enzyme capable of catalysis with either molybdenum or tungsten at the active site.
    Stewart LJ; Bailey S; Bennett B; Charnock JM; Garner CD; McAlpine AS
    J Mol Biol; 2000 Jun; 299(3):593-600. PubMed ID: 10835270
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of the active-site design of molybdenum oxo-transfer enzymes by quantum mechanical calculations.
    Li J; Ryde U
    Inorg Chem; 2014 Nov; 53(22):11913-24. PubMed ID: 25372012
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spectroscopic and electronic structure studies of symmetrized models for reduced members of the dimethylsulfoxide reductase enzyme family.
    McNaughton RL; Lim BS; Knottenbelt SZ; Holm RH; Kirk ML
    J Am Chem Soc; 2008 Apr; 130(14):4628-36. PubMed ID: 18341333
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bis(dithiolene)molybdenum analogues relevant to the DMSO reductase enzyme family: synthesis, structures, and oxygen atom transfer reactions and kinetics.
    Lim BS; Holm RH
    J Am Chem Soc; 2001 Mar; 123(9):1920-30. PubMed ID: 11456813
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chemical systems modeling the d
    Young CG
    J Inorg Biochem; 2016 Sep; 162():238-252. PubMed ID: 27432259
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Understanding the origin of metal-sulfur vibrations in an oxo-molybdenum dithiolene complex: relevance to sulfite oxidase.
    Inscore FE; Knottenbelt SZ; Rubie ND; Joshi HK; Kirk ML; Enemark JH
    Inorg Chem; 2006 Feb; 45(3):967-76. PubMed ID: 16441102
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sulfur K-edge X-ray absorption spectroscopy and density functional theory calculations on monooxo Mo(IV) and bisoxo Mo(VI) bis-dithiolenes: insights into the mechanism of oxo transfer in sulfite oxidase and its relation to the mechanism of DMSO reductase.
    Ha Y; Tenderholt AL; Holm RH; Hedman B; Hodgson KO; Solomon EI
    J Am Chem Soc; 2014 Jun; 136(25):9094-105. PubMed ID: 24884723
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Redox characteristics of the tungsten DMSO reductase of Rhodobacter capsulatus.
    Hagedoorn PL; Hagen WR; Stewart LJ; Docrat A; Bailey S; Garner CD
    FEBS Lett; 2003 Dec; 555(3):606-10. PubMed ID: 14675782
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spectroscopic characterization of YedY: the role of sulfur coordination in a Mo(V) sulfite oxidase family enzyme form.
    Yang J; Rothery R; Sempombe J; Weiner JH; Kirk ML
    J Am Chem Soc; 2009 Nov; 131(43):15612-4. PubMed ID: 19860477
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oxo-carboxylato-molybdenum(VI) complexes possessing dithiolene ligands related to the active site of type II DMSOR family molybdoenzymes.
    Sugimoto H; Sato M; Giles LJ; Asano K; Suzuki T; Kirk ML; Itoh S
    Dalton Trans; 2013 Dec; 42(45):15927-30. PubMed ID: 24029827
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Resonance Raman spectroscopy of pyranopterin molybdenum enzymes.
    Kirk ML; Lepluart J; Yang J
    J Inorg Biochem; 2022 Oct; 235():111907. PubMed ID: 35932756
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sulfite-oxidizing enzymes.
    Kappler U; Enemark JH
    J Biol Inorg Chem; 2015 Mar; 20(2):253-64. PubMed ID: 25261289
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evolutionary persistence of the molybdopyranopterin-containing sulfite oxidase protein fold.
    Workun GJ; Moquin K; Rothery RA; Weiner JH
    Microbiol Mol Biol Rev; 2008 Jun; 72(2):228-48, table of contents. PubMed ID: 18535145
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pyranopterin Coordination Controls Molybdenum Electrochemistry in Escherichia coli Nitrate Reductase.
    Wu SY; Rothery RA; Weiner JH
    J Biol Chem; 2015 Oct; 290(41):25164-73. PubMed ID: 26297003
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molybdenum and Tungsten Cofactors and the Reactions They Catalyze.
    Kirk ML; Kc K
    Met Ions Life Sci; 2020 Mar; 20():. PubMed ID: 32851830
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The mononuclear molybdenum enzymes.
    Hille R; Hall J; Basu P
    Chem Rev; 2014 Apr; 114(7):3963-4038. PubMed ID: 24467397
    [No Abstract]   [Full Text] [Related]  

  • 20. {Moco}
    Enemark JH
    J Inorg Biochem; 2022 Jun; 231():111801. PubMed ID: 35339771
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.