These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

55 related articles for article (PubMed ID: 25267718)

  • 1. Investigating substrate-induced motion between the scaffold and transport domains in the glutamate transporter EAAT1.
    Rong X; Zomot E; Zhang X; Qu S
    Mol Pharmacol; 2014 Dec; 86(6):657-64. PubMed ID: 25267718
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cysteine mutagenesis reveals alternate proximity between transmembrane domain 2 and hairpin loop 1 of the glutamate transporter EAAT1.
    Zhang Y; Zhang X; Qu S
    Amino Acids; 2014 Jul; 46(7):1697-705. PubMed ID: 24692063
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Substrate-Induced Motion between TM4 and TM7 of the Glutamate Transporter EAAT1 Revealed by Paired Cysteine Mutagenesis.
    Zhang W; Zhang X; Qu S
    Mol Pharmacol; 2019 Jan; 95(1):33-42. PubMed ID: 30348896
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Paired-Cysteine Scanning Reveals Conformationally Sensitive Proximity between the TM4b-4c Loop and TM8 of the Glutamate Transporter EAAT1.
    Qu S; Zhang W; He S; Zhang X
    ACS Chem Neurosci; 2019 May; 10(5):2541-2550. PubMed ID: 30802031
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A complex relative motion between hairpin loop 2 and transmembrane domain 5 in the glutamate transporter GLT-1.
    Rong X; Zhang X; Qu S
    Int J Biochem Cell Biol; 2015 Mar; 60():1-7. PubMed ID: 25562514
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Substrates and non-transportable analogues induce structural rearrangements at the extracellular entrance of the glial glutamate transporter GLT-1/EAAT2.
    Qu S; Kanner BI
    J Biol Chem; 2008 Sep; 283(39):26391-400. PubMed ID: 18658151
    [TBL] [Abstract][Full Text] [Related]  

  • 7. TM4 of the glutamate transporter GLT-1 experiences substrate-induced motion during the transport cycle.
    Rong X; Tan F; Wu X; Zhang X; Lu L; Zou X; Qu S
    Sci Rep; 2016 Oct; 6():34522. PubMed ID: 27698371
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural rearrangements at the translocation pore of the human glutamate transporter, EAAT1.
    Leighton BH; Seal RP; Watts SD; Skyba MO; Amara SG
    J Biol Chem; 2006 Oct; 281(40):29788-96. PubMed ID: 16877378
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conformationally Sensitive Proximity Between the TM3-4 Loop and Hairpin Loop 2 of the Glutamate Transporter EAAT2 Revealed by Paired-Cysteine Mutagenesis.
    Wang J; Qu S
    ACS Chem Neurosci; 2021 Jan; 12(1):163-175. PubMed ID: 33315395
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cysteine Scanning Mutagenesis of TM4b-4c Loop of Glutamate Transporter EAAT1 Reveals Three Conformationally Sensitive Residues.
    Zhang W; Zhang X; Qu S
    Mol Pharmacol; 2018 Jul; 94(1):713-721. PubMed ID: 29654220
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Large collective motions regulate the functional properties of glutamate transporter trimers.
    Jiang J; Shrivastava IH; Watts SD; Bahar I; Amara SG
    Proc Natl Acad Sci U S A; 2011 Sep; 108(37):15141-6. PubMed ID: 21876140
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The position of an arginine residue influences substrate affinity and K+ coupling in the human glutamate transporter, EAAT1.
    Ryan RM; Kortt NC; Sirivanta T; Vandenberg RJ
    J Neurochem; 2010 Jul; 114(2):565-75. PubMed ID: 20477940
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The accessibility in the external part of the TM5 of the glutamate transporter EAAT1 is conformationally sensitive during the transport cycle.
    Zhang X; Qu S
    PLoS One; 2012; 7(1):e30961. PubMed ID: 22292083
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conformationally sensitive reactivity to permeant sulfhydryl reagents of cysteine residues engineered into helical hairpin 1 of the glutamate transporter GLT-1.
    Shlaifer I; Kanner BI
    Mol Pharmacol; 2007 May; 71(5):1341-8. PubMed ID: 17272682
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proximity of transmembrane segments 5 and 8 of the glutamate transporter GLT-1 inferred from paired cysteine mutagenesis.
    Zhang X; Qu S
    PLoS One; 2011; 6(6):e21288. PubMed ID: 21698173
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Conformationally Sensitive Spatial Distance Between the TM3-4 Loop and Transmembrane Segment 7 in the Glutamate Transporter Revealed by Paired-Cysteine Mutagenesis.
    Qu Q; Wang J; Li G; Chen R; Qu S
    Front Cell Dev Biol; 2021; 9():737629. PubMed ID: 34621751
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inward-facing conformation of glutamate transporters as revealed by their inverted-topology structural repeats.
    Crisman TJ; Qu S; Kanner BI; Forrest LR
    Proc Natl Acad Sci U S A; 2009 Dec; 106(49):20752-7. PubMed ID: 19926849
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mutations in transmembrane domains 5 and 7 of the human excitatory amino acid transporter 1 affect the substrate-activated anion channel.
    Huang S; Vandenberg RJ
    Biochemistry; 2007 Aug; 46(34):9685-92. PubMed ID: 17676873
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Proximity of transmembrane domains 1 and 3 of the gamma-aminobutyric acid transporter GAT-1 inferred from paired cysteine mutagenesis.
    Zomot E; Zhou Y; Kanner BI
    J Biol Chem; 2005 Jul; 280(27):25512-6. PubMed ID: 15905165
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Opposite movement of the external gate of a glutamate transporter homolog upon binding cotransported sodium compared with substrate.
    Focke PJ; Moenne-Loccoz P; Larsson HP
    J Neurosci; 2011 Apr; 31(16):6255-62. PubMed ID: 21508248
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.