These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 25267822)

  • 1. Model-based hierarchical reinforcement learning and human action control.
    Botvinick M; Weinstein A
    Philos Trans R Soc Lond B Biol Sci; 2014 Nov; 369(1655):. PubMed ID: 25267822
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hierarchical reinforcement learning and decision making.
    Botvinick MM
    Curr Opin Neurobiol; 2012 Dec; 22(6):956-62. PubMed ID: 22695048
    [TBL] [Abstract][Full Text] [Related]  

  • 3. (Reinforcement?) Learning to forage optimally.
    Kolling N; Akam T
    Curr Opin Neurobiol; 2017 Oct; 46():162-169. PubMed ID: 28918312
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Navigating complex decision spaces: Problems and paradigms in sequential choice.
    Walsh MM; Anderson JR
    Psychol Bull; 2014 Mar; 140(2):466-86. PubMed ID: 23834192
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neural basis of reinforcement learning and decision making.
    Lee D; Seo H; Jung MW
    Annu Rev Neurosci; 2012; 35():287-308. PubMed ID: 22462543
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Speed/accuracy trade-off between the habitual and the goal-directed processes.
    Keramati M; Dezfouli A; Piray P
    PLoS Comput Biol; 2011 May; 7(5):e1002055. PubMed ID: 21637741
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Goal-directed decision making as probabilistic inference: a computational framework and potential neural correlates.
    Solway A; Botvinick MM
    Psychol Rev; 2012 Jan; 119(1):120-54. PubMed ID: 22229491
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A goal-centric outlook on learning.
    Molinaro G; Collins AGE
    Trends Cogn Sci; 2023 Dec; 27(12):1150-1164. PubMed ID: 37696690
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multiple memory systems as substrates for multiple decision systems.
    Doll BB; Shohamy D; Daw ND
    Neurobiol Learn Mem; 2015 Jan; 117():4-13. PubMed ID: 24846190
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Habits as action sequences: hierarchical action control and changes in outcome value.
    Dezfouli A; Lingawi NW; Balleine BW
    Philos Trans R Soc Lond B Biol Sci; 2014 Nov; 369(1655):. PubMed ID: 25267824
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Learning, Reward, and Decision Making.
    O'Doherty JP; Cockburn J; Pauli WM
    Annu Rev Psychol; 2017 Jan; 68():73-100. PubMed ID: 27687119
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Goal-Directed Decision Making with Spiking Neurons.
    Friedrich J; Lengyel M
    J Neurosci; 2016 Feb; 36(5):1529-46. PubMed ID: 26843636
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Opponent Identity Influences Value Learning in Simple Games.
    Vickery TJ; Kleinman MR; Chun MM; Lee D
    J Neurosci; 2015 Aug; 35(31):11133-43. PubMed ID: 26245974
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reinforcement learning signals in the human striatum distinguish learners from nonlearners during reward-based decision making.
    Schönberg T; Daw ND; Joel D; O'Doherty JP
    J Neurosci; 2007 Nov; 27(47):12860-7. PubMed ID: 18032658
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neurocomputational mechanisms of reinforcement-guided learning in humans: a review.
    Cohen MX
    Cogn Affect Behav Neurosci; 2008 Jun; 8(2):113-25. PubMed ID: 18589502
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The ubiquity of model-based reinforcement learning.
    Doll BB; Simon DA; Daw ND
    Curr Opin Neurobiol; 2012 Dec; 22(6):1075-81. PubMed ID: 22959354
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Contributions of the basal ganglia to action sequence learning and performance.
    Garr E
    Neurosci Biobehav Rev; 2019 Dec; 107():279-295. PubMed ID: 31541637
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An integrate-and-fire model of prefrontal cortex neuronal activity during performance of goal-directed decision making.
    Koene RA; Hasselmo ME
    Cereb Cortex; 2005 Dec; 15(12):1964-81. PubMed ID: 15858166
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A continuous-time neural model for sequential action.
    Kachergis G; Wyatte D; O'Reilly RC; de Kleijn R; Hommel B
    Philos Trans R Soc Lond B Biol Sci; 2014 Nov; 369(1655):. PubMed ID: 25267830
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reinforcement-based decision making in corticostriatal circuits: mutual constraints by neurocomputational and diffusion models.
    Ratcliff R; Frank MJ
    Neural Comput; 2012 May; 24(5):1186-229. PubMed ID: 22295983
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.