These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 25267830)

  • 1. A continuous-time neural model for sequential action.
    Kachergis G; Wyatte D; O'Reilly RC; de Kleijn R; Hommel B
    Philos Trans R Soc Lond B Biol Sci; 2014 Nov; 369(1655):. PubMed ID: 25267830
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Goal-Directed Decision Making with Spiking Neurons.
    Friedrich J; Lengyel M
    J Neurosci; 2016 Feb; 36(5):1529-46. PubMed ID: 26843636
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Goal-directed decision making as probabilistic inference: a computational framework and potential neural correlates.
    Solway A; Botvinick MM
    Psychol Rev; 2012 Jan; 119(1):120-54. PubMed ID: 22229491
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An integrate-and-fire model of prefrontal cortex neuronal activity during performance of goal-directed decision making.
    Koene RA; Hasselmo ME
    Cereb Cortex; 2005 Dec; 15(12):1964-81. PubMed ID: 15858166
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The goal circuit model: a hierarchical multi-route model of the acquisition and control of routine sequential action in humans.
    Cooper RP; Ruh N; Mareschal D
    Cogn Sci; 2014 Mar; 38(2):244-74. PubMed ID: 23941131
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A parallel framework for interactive behavior.
    Cisek P
    Prog Brain Res; 2007; 165():475-92. PubMed ID: 17925265
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Model-based hierarchical reinforcement learning and human action control.
    Botvinick M; Weinstein A
    Philos Trans R Soc Lond B Biol Sci; 2014 Nov; 369(1655):. PubMed ID: 25267822
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reward-dependent learning in neuronal networks for planning and decision making.
    Dehaene S; Changeux JP
    Prog Brain Res; 2000; 126():217-29. PubMed ID: 11105649
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Neural Correlates of Hierarchical Predictions for Perceptual Decisions.
    Weilnhammer VA; Stuke H; Sterzer P; Schmack K
    J Neurosci; 2018 May; 38(21):5008-5021. PubMed ID: 29712780
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Habits as action sequences: hierarchical action control and changes in outcome value.
    Dezfouli A; Lingawi NW; Balleine BW
    Philos Trans R Soc Lond B Biol Sci; 2014 Nov; 369(1655):. PubMed ID: 25267824
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sensorimotor learning biases choice behavior: a learning neural field model for decision making.
    Klaes C; Schneegans S; Schöner G; Gail A
    PLoS Comput Biol; 2012; 8(11):e1002774. PubMed ID: 23166483
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multiple memory systems as substrates for multiple decision systems.
    Doll BB; Shohamy D; Daw ND
    Neurobiol Learn Mem; 2015 Jan; 117():4-13. PubMed ID: 24846190
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Navigating complex decision spaces: Problems and paradigms in sequential choice.
    Walsh MM; Anderson JR
    Psychol Bull; 2014 Mar; 140(2):466-86. PubMed ID: 23834192
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Perceptual Decision-Making: Biases in Post-Error Reaction Times Explained by Attractor Network Dynamics.
    Berlemont K; Nadal JP
    J Neurosci; 2019 Jan; 39(5):833-853. PubMed ID: 30504276
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect on movement selection of an evolving sensory representation: a multiple controller model of skill acquisition.
    Shah A; Barto AG
    Brain Res; 2009 Nov; 1299():55-73. PubMed ID: 19595991
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A biologically plausible computational theory for value integration and action selection in decisions with competing alternatives.
    Christopoulos V; Bonaiuto J; Andersen RA
    PLoS Comput Biol; 2015 Mar; 11(3):e1004104. PubMed ID: 25803729
    [TBL] [Abstract][Full Text] [Related]  

  • 17. How mechanisms of perceptual decision-making affect the psychometric function.
    Gold JI; Ding L
    Prog Neurobiol; 2013 Apr; 103():98-114. PubMed ID: 22609483
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Perceptual Decision-Making as Probabilistic Inference by Neural Sampling.
    Haefner RM; Berkes P; Fiser J
    Neuron; 2016 May; 90(3):649-60. PubMed ID: 27146267
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neural networks and perceptual learning.
    Tsodyks M; Gilbert C
    Nature; 2004 Oct; 431(7010):775-81. PubMed ID: 15483598
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The basal ganglia's contributions to perceptual decision making.
    Ding L; Gold JI
    Neuron; 2013 Aug; 79(4):640-9. PubMed ID: 23972593
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.