These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 25267848)
21. Temperature and meal size effects on the postprandial metabolism and energetics in a boid snake. Toledo LF; Abe AS; Andrade DV Physiol Biochem Zool; 2003; 76(2):240-6. PubMed ID: 12794677 [TBL] [Abstract][Full Text] [Related]
22. The physiological response to digestion in snakes: A feast for the integrative physiologist. Wang T; Rindom E Comp Biochem Physiol A Mol Integr Physiol; 2021 Apr; 254():110891. PubMed ID: 33400953 [TBL] [Abstract][Full Text] [Related]
23. Blood oxygen affinity increases during digestion in the South American rattlesnake, Crotalus durissus terrificus. Bovo RP; Fuga A; Micheli-Campbell MA; Carvalho JE; Andrade DV Comp Biochem Physiol A Mol Integr Physiol; 2015 Aug; 186():75-82. PubMed ID: 25446935 [TBL] [Abstract][Full Text] [Related]
25. Cooking and grinding reduces the cost of meat digestion. Boback SM; Cox CL; Ott BD; Carmody R; Wrangham RW; Secor SM Comp Biochem Physiol A Mol Integr Physiol; 2007 Nov; 148(3):651-6. PubMed ID: 17827047 [TBL] [Abstract][Full Text] [Related]
26. The reduction in arterial pH with increased temperature is not affected by hyperoxia in toads (Rhinella marina) and pythons (Python molurus). Castro SA; Leite CAC; Wang T J Exp Biol; 2023 Dec; 226(24):. PubMed ID: 38009047 [TBL] [Abstract][Full Text] [Related]
27. Morphological respiratory diffusion capacity of the lungs of ball pythons (Python regius). Starck JM; Aupperle H; Kiefer I; Weimer I; Krautwald-Junghanns ME; Pees M Zoology (Jena); 2012 Aug; 115(4):245-54. PubMed ID: 22770588 [TBL] [Abstract][Full Text] [Related]
28. Evolution of regulatory responses to feeding in snakes. Secor SM; Diamond JM Physiol Biochem Zool; 2000; 73(2):123-41. PubMed ID: 10801391 [TBL] [Abstract][Full Text] [Related]
30. Amikacin pharmacokinetics and the effects of ambient temperature on the dosage regimen in ball pythons (Python regius). Johnson JH; Jensen JM; Brumbaugh GW; Boothe DM J Zoo Wildl Med; 1997 Mar; 28(1):80-8. PubMed ID: 9226620 [TBL] [Abstract][Full Text] [Related]
31. Thermal acclimation is not necessary to maintain a wide thermal breadth of aerobic scope in the common killifish (Fundulus heteroclitus). Healy TM; Schulte PM Physiol Biochem Zool; 2012; 85(2):107-19. PubMed ID: 22418704 [TBL] [Abstract][Full Text] [Related]
32. The pancreas does not contribute to the non-adrenergic-non-cholinergic stimulation of heart rate in digesting pythons. Guagnoni IN; Last KB; Rindom E; Wang T Comp Biochem Physiol A Mol Integr Physiol; 2024 May; 291():111608. PubMed ID: 38373589 [TBL] [Abstract][Full Text] [Related]
33. Physiology of invasion: cane toads are constrained by thermal effects on physiological mechanisms that support locomotor performance. Seebacher F; Franklin CE J Exp Biol; 2011 May; 214(Pt 9):1437-44. PubMed ID: 21490252 [TBL] [Abstract][Full Text] [Related]
34. Low cost of gastric acid secretion during digestion in ball pythons. Nørgaard S; Andreassen K; Malte CL; Enok S; Wang T Comp Biochem Physiol A Mol Integr Physiol; 2016 Apr; 194():62-6. PubMed ID: 26802791 [TBL] [Abstract][Full Text] [Related]
35. The effects of fasting duration on the metabolic response to feeding in Python molurus: an evaluation of the energetic costs associated with gastrointestinal growth and upregulation. Overgaard J; Andersen JB; Wang T Physiol Biochem Zool; 2002; 75(4):360-8. PubMed ID: 12324892 [TBL] [Abstract][Full Text] [Related]
36. The effects of dissolved oxygen level on the metabolic interaction between digestion and locomotion in juvenile southern catfish (Silurus meridionalis Chen). Zhang W; Cao ZD; Peng JL; Chen BJ; Fu SJ Comp Biochem Physiol A Mol Integr Physiol; 2010 Nov; 157(3):212-9. PubMed ID: 20601052 [TBL] [Abstract][Full Text] [Related]
37. Fuel switching and energy partitioning during the postprandial metabolic response in the ball python (Python regius). Waas S; Werner RA; Starck JM J Exp Biol; 2010 Apr; 213(Pt 8):1266-71. PubMed ID: 20348338 [TBL] [Abstract][Full Text] [Related]
38. Gas transport and blood acid-base balance in diving sea snakes. Seymour RS; Webster ME J Exp Zool; 1975 Feb; 191(2):169-81. PubMed ID: 234502 [TBL] [Abstract][Full Text] [Related]
39. Magnetic resonance imaging volumetry for noninvasive measures of phenotypic flexibility during digestion in Burmese pythons. Hansen K; Pedersen PB; Pedersen M; Wang T Physiol Biochem Zool; 2013; 86(1):149-58. PubMed ID: 23303329 [TBL] [Abstract][Full Text] [Related]
40. Seasonal changes in blood oxygen transport and acid-base status in the tegu lizard, Tupinambis merianae. Andrade DV; Brito SP; Toledo LF; Abe AS Respir Physiol Neurobiol; 2004 May; 140(2):197-208. PubMed ID: 15134667 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]