These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 25268136)

  • 1. Functional deficiency of MHC class I enhances LTP and abolishes LTD in the nucleus accumbens of mice.
    Edamura M; Murakami G; Meng H; Itakura M; Shigemoto R; Fukuda A; Nakahara D
    PLoS One; 2014; 9(9):e107099. PubMed ID: 25268136
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nucleus accumbens neurons exhibit synaptic scaling that is occluded by repeated dopamine pre-exposure.
    Sun X; Wolf ME
    Eur J Neurosci; 2009 Aug; 30(4):539-50. PubMed ID: 19674091
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Selective alterations of NMDAR function and plasticity in D1 and D2 medium spiny neurons in the nucleus accumbens shell following chronic intermittent ethanol exposure.
    Renteria R; Maier EY; Buske TR; Morrisett RA
    Neuropharmacology; 2017 Jan; 112(Pt A):164-171. PubMed ID: 26946430
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Long-term depression in the nucleus accumbens: a neural correlate of behavioral sensitization to cocaine.
    Thomas MJ; Beurrier C; Bonci A; Malenka RC
    Nat Neurosci; 2001 Dec; 4(12):1217-23. PubMed ID: 11694884
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dopamine Receptors Differentially Control Binge Alcohol Drinking-Mediated Synaptic Plasticity of the Core Nucleus Accumbens Direct and Indirect Pathways.
    Ji X; Saha S; Kolpakova J; Guildford M; Tapper AR; Martin GE
    J Neurosci; 2017 May; 37(22):5463-5474. PubMed ID: 28473645
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of GluR1 expression in nucleus accumbens neurons in cocaine sensitization and cocaine-seeking behavior.
    Bachtell RK; Choi KH; Simmons DL; Falcon E; Monteggia LM; Neve RL; Self DW
    Eur J Neurosci; 2008 May; 27(9):2229-40. PubMed ID: 18430032
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MHC class I modulates NMDA receptor function and AMPA receptor trafficking.
    Fourgeaud L; Davenport CM; Tyler CM; Cheng TT; Spencer MB; Boulanger LM
    Proc Natl Acad Sci U S A; 2010 Dec; 107(51):22278-83. PubMed ID: 21135233
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Disrupting GluA2 phosphorylation potentiates reinstatement of cocaine seeking.
    Briand LA; Deutschmann AU; Ellis AS; Fosnocht AQ
    Neuropharmacology; 2016 Dec; 111():231-241. PubMed ID: 27622930
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Muscarinic M1 Receptor Modulation of Synaptic Plasticity in Nucleus Accumbens of Wild-Type and Fragile X Mice.
    Neuhofer D; Lassalle O; Manzoni OJ
    ACS Chem Neurosci; 2018 Sep; 9(9):2233-2240. PubMed ID: 29486555
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cocaine Withdrawal Impairs mGluR5-Dependent Long-Term Depression in Nucleus Accumbens Shell Neurons of Both Direct and Indirect Pathways.
    Huang CC; Liang YC; Lee CC; Hsu KS
    Mol Neurobiol; 2015 Dec; 52(3):1223-1233. PubMed ID: 25319571
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neuronal major histocompatibility complex class I molecules are implicated in the generation of asymmetries in hippocampal circuitry.
    Kawahara A; Kurauchi S; Fukata Y; Martínez-Hernández J; Yagihashi T; Itadani Y; Sho R; Kajiyama T; Shinzato N; Narusuye K; Fukata M; Luján R; Shigemoto R; Ito I
    J Physiol; 2013 Oct; 591(19):4777-91. PubMed ID: 23878366
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Long-term depression requires postsynaptic AMPA GluR2 receptor in adult mouse cingulate cortex.
    Toyoda H; Wu LJ; Zhao MG; Xu H; Jia Z; Zhuo M
    J Cell Physiol; 2007 May; 211(2):336-43. PubMed ID: 17149707
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synaptic transmission and plasticity in the absence of AMPA glutamate receptor GluR2 and GluR3.
    Meng Y; Zhang Y; Jia Z
    Neuron; 2003 Jul; 39(1):163-76. PubMed ID: 12848940
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vivo chronic intermittent ethanol exposure reverses the polarity of synaptic plasticity in the nucleus accumbens shell.
    Jeanes ZM; Buske TR; Morrisett RA
    J Pharmacol Exp Ther; 2011 Jan; 336(1):155-64. PubMed ID: 20947635
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Long-term subregion-specific encoding of enhanced ethanol intake by D1DR medium spiny neurons of the nucleus accumbens.
    Renteria R; Buske TR; Morrisett RA
    Addict Biol; 2018 Mar; 23(2):689-698. PubMed ID: 28656742
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cocaine and Amphetamine Induce Overlapping but Distinct Patterns of AMPAR Plasticity in Nucleus Accumbens Medium Spiny Neurons.
    Jedynak J; Hearing M; Ingebretson A; Ebner SR; Kelly M; Fischer RA; Kourrich S; Thomas MJ
    Neuropsychopharmacology; 2016 Jan; 41(2):464-76. PubMed ID: 26068728
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cocaine-induced plasticity in the nucleus accumbens is cell specific and develops without prolonged withdrawal.
    Dobi A; Seabold GK; Christensen CH; Bock R; Alvarez VA
    J Neurosci; 2011 Feb; 31(5):1895-904. PubMed ID: 21289199
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanisms by which dopamine receptors may influence synaptic plasticity.
    Wolf ME; Mangiavacchi S; Sun X
    Ann N Y Acad Sci; 2003 Nov; 1003():241-9. PubMed ID: 14684450
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Long-term potentiation in the hippocampal CA1 region does not require insertion and activation of GluR2-lacking AMPA receptors.
    Gray EE; Fink AE; Sariñana J; Vissel B; O'Dell TJ
    J Neurophysiol; 2007 Oct; 98(4):2488-92. PubMed ID: 17652419
    [TBL] [Abstract][Full Text] [Related]  

  • 20. aPKC-Mediated Persistent Increase in AMPA/NMDA Ratio in the VTA Participates in the Neuroadaptive Signal Necessary to Induce NAc Synaptic Plasticity After Cocaine Administration.
    Vaquer-Alicea ADC; Vázquez-Torres R; Devarie-Hornedo M; Vicenty-Padilla JC; Santos-Vera B; María-Ríos C; Vélez-Hernández ME; Sacktor T; Jiménez-Rivera CA
    Neuroscience; 2018 Nov; 392():129-140. PubMed ID: 30243909
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.