These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 25268387)

  • 1. Micropillar sequence designs for fundamental inertial flow transformations.
    Stoecklein D; Wu CY; Owsley K; Xie Y; Di Carlo D; Ganapathysubramanian B
    Lab Chip; 2014 Nov; 14(21):4197-204. PubMed ID: 25268387
    [TBL] [Abstract][Full Text] [Related]  

  • 2. FlowSculpt: software for efficient design of inertial flow sculpting devices.
    Stoecklein D; Davies M; de Rutte JM; Wu CY; Di Carlo D; Ganapathysubramanian B
    Lab Chip; 2019 Oct; 19(19):3277-3291. PubMed ID: 31482902
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Engineering fluid flow using sequenced microstructures.
    Amini H; Sollier E; Masaeli M; Xie Y; Ganapathysubramanian B; Stone HA; Di Carlo D
    Nat Commun; 2013; 4():1826. PubMed ID: 23652014
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DLD pillar shape design for efficient separation of spherical and non-spherical bioparticles.
    Ranjan S; Zeming KK; Jureen R; Fisher D; Zhang Y
    Lab Chip; 2014 Nov; 14(21):4250-62. PubMed ID: 25209150
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimized design of obstacle sequences for microfluidic mixing in an inertial regime.
    Antognoli M; Stoecklein D; Galletti C; Brunazzi E; Di Carlo D
    Lab Chip; 2021 Oct; 21(20):3910-3923. PubMed ID: 34636817
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microfluidic flow switching design using volume of fluid model.
    Chein R; Tsai SH
    Biomed Microdevices; 2004 Mar; 6(1):81-90. PubMed ID: 15307449
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of channel position on sample confinement in two-dimensional planar microfluidic devices.
    Lerch MA; Hoffman MD; Jacobson SC
    Lab Chip; 2008 Feb; 8(2):316-22. PubMed ID: 18231672
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microstructure-induced helical vortices allow single-stream and long-term inertial focusing.
    Chung AJ; Pulido D; Oka JC; Amini H; Masaeli M; Di Carlo D
    Lab Chip; 2013 Aug; 13(15):2942-9. PubMed ID: 23665981
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Single channel layer, single sheath-flow inlet microfluidic flow cytometer with three-dimensional hydrodynamic focusing.
    Lin SC; Yen PW; Peng CC; Tung YC
    Lab Chip; 2012 Sep; 12(17):3135-41. PubMed ID: 22763751
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Toolbox for the design of optimized microfluidic components.
    Mott DR; Howell PB; Golden JP; Kaplan CR; Ligler FS; Oran ES
    Lab Chip; 2006 Apr; 6(4):540-9. PubMed ID: 16572217
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of dynamic contact angle in a volume of fluid (VOF) model for a microfluidic capillary flow.
    Ashish Saha A; Mitra SK
    J Colloid Interface Sci; 2009 Nov; 339(2):461-80. PubMed ID: 19732904
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Numerical evaluation and experimental validation of cross-flow microfiltration device design.
    De Jesús Vega M; Wakim J; Orbey N; Barry C
    Biomed Microdevices; 2019 Feb; 21(1):21. PubMed ID: 30790088
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydrodynamically tunable optofluidic cylindrical microlens.
    Mao X; Waldeisen JR; Juluri BK; Huang TJ
    Lab Chip; 2007 Oct; 7(10):1303-8. PubMed ID: 17896014
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Single stream inertial focusing in low aspect-ratio triangular microchannels.
    Mukherjee P; Wang X; Zhou J; Papautsky I
    Lab Chip; 2018 Dec; 19(1):147-157. PubMed ID: 30488049
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Generation of complex concentration profiles by partial diffusive mixing in multi-stream laminar flow.
    Zhou Y; Wang Y; Mukherjee T; Lin Q
    Lab Chip; 2009 May; 9(10):1439-48. PubMed ID: 19417912
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Numerical and experimental evaluation of microfluidic sorting devices.
    Taylor JK; Ren CL; Stubley GD
    Biotechnol Prog; 2008; 24(4):981-91. PubMed ID: 19194907
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experimental and numerical investigation into micro-flow cytometer with 3-D hydrodynamic focusing effect and micro-weir structure.
    Hou HH; Tsai CH; Fu LM; Yang RJ
    Electrophoresis; 2009 Jul; 30(14):2507-15. PubMed ID: 19639570
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Magnetic-based microfluidic platform for biomolecular separation.
    Ramadan Q; Samper V; Poenar D; Yu C
    Biomed Microdevices; 2006 Jun; 8(2):151-8. PubMed ID: 16688574
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A simple sheath-flow microfluidic device for micro/nanomanufacturing: fabrication of hydrodynamically shaped polymer fibers.
    Thangawng AL; Howell PB; Richards JJ; Erickson JS; Ligler FS
    Lab Chip; 2009 Nov; 9(21):3126-30. PubMed ID: 19823729
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Soft inertial microfluidics for high throughput separation of bacteria from human blood cells.
    Wu Z; Willing B; Bjerketorp J; Jansson JK; Hjort K
    Lab Chip; 2009 May; 9(9):1193-9. PubMed ID: 19370236
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.