These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 25268504)

  • 21. Fluorescence Resonance Energy Transfer-Based Photonic Circuits Using Single-Stranded Tile Self-Assembly and DNA Strand Displacement.
    Zhang X; Ying N; Shen C; Cui G
    J Nanosci Nanotechnol; 2017 Feb; 17(2):1053-060. PubMed ID: 29672010
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A DNA nanomachine based on a duplex-triplex transition.
    Chen Y; Lee SH; Mao C
    Angew Chem Int Ed Engl; 2004 Oct; 43(40):5335-8. PubMed ID: 15468182
    [No Abstract]   [Full Text] [Related]  

  • 23. Visual Detection of Multiplex MicroRNAs Using Cationic Conjugated Polymer Materials.
    Zhou Y; Zhang J; Zhao L; Li Y; Chen H; Li S; Cheng Y
    ACS Appl Mater Interfaces; 2016 Jan; 8(2):1520-6. PubMed ID: 26709618
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Study of endothelial cell apoptosis using fluorescence resonance energy transfer (FRET) biosensor cell line with hemodynamic microfluidic chip system.
    Yu JQ; Liu XF; Chin LK; Liu AQ; Luo KQ
    Lab Chip; 2013 Jul; 13(14):2693-700. PubMed ID: 23620256
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Quick Detection of DNase II-Type Breaks in Formalin-Fixed Tissue Sections.
    Minchew CL; Didenko VV
    Methods Mol Biol; 2017; 1644():113-119. PubMed ID: 28710757
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The detection of mercury ion using DNA as sensors based on fluorescence resonance energy transfer.
    Xia N; Feng F; Liu C; Li R; Xiang W; Shi H; Gao L
    Talanta; 2019 Jan; 192():500-507. PubMed ID: 30348424
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A FRET-based DNA nano-tweezer technique for the imaging analysis of specific mRNA.
    Funabashi H; Shigeto H; Nakatsuka K; Kuroda A
    Analyst; 2015 Feb; 140(4):999-1003. PubMed ID: 25529369
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Labeling-free fluorescent detection of DNA hybridization through FRET from pyrene excimer to DNA intercalator SYBR green I.
    Zhou R; Xu C; Dong J; Wang G
    Biosens Bioelectron; 2015 Mar; 65():103-7. PubMed ID: 25461145
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Stable DNA Nanomachine Based on Duplex-Triplex Transition for Ratiometric Imaging Instantaneous pH Changes in Living Cells.
    Yang M; Zhang X; Liu H; Kang H; Zhu Z; Yang W; Tan W
    Anal Chem; 2015 Jun; 87(12):5854-9. PubMed ID: 26016566
    [TBL] [Abstract][Full Text] [Related]  

  • 30.
    Francés-Soriano L; Leino M; Dos Santos MC; Kovacs D; Borbas KE; Söderberg O; Hildebrandt N
    Anal Chem; 2021 Jan; 93(3):1842-1850. PubMed ID: 33356162
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Development of probes for cellular functions using fluorescent proteins and fluorescence resonance energy transfer.
    Miyawaki A
    Annu Rev Biochem; 2011; 80():357-73. PubMed ID: 21529159
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A Multicolor Fluorescence Nanoprobe Platform Using Two-Dimensional Metal Organic Framework Nanosheets and Double Stirring Bar Assisted Target Replacement for Multiple Bioanalytical Applications.
    Yang Q; Hong J; Wu YX; Cao Y; Wu D; Hu F; Gan N
    ACS Appl Mater Interfaces; 2019 Nov; 11(44):41506-41515. PubMed ID: 31580049
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dual-site fluorescent probe for multi-response detection of ClO
    Du Y; Wang B; Jin D; Li M; Li Y; Yan X; Zhou X; Chen L
    Anal Chim Acta; 2020 Mar; 1103():174-182. PubMed ID: 32081182
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Acridone-tagged DNA as a new probe for DNA detection by fluorescence resonance energy transfer and for mismatch DNA recognition.
    Hagiwara Y; Hasegawa T; Shoji A; Kuwahara M; Ozaki H; Sawai H
    Bioorg Med Chem; 2008 Jul; 16(14):7013-20. PubMed ID: 18539465
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A single-molecule Förster resonance energy transfer analysis of fluorescent DNA-protein conjugates for nanobiotechnology.
    Kukolka F; Müller BK; Paternoster S; Arndt A; Niemeyer CM; Bräuchle C; Lamb DC
    Small; 2006 Aug; 2(8-9):1083-9. PubMed ID: 17193172
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Graphene oxide based fluorescence resonance energy transfer and loop-mediated isothermal amplification for white spot syndrome virus detection.
    Waiwijit U; Phokaratkul D; Kampeera J; Lomas T; Wisitsoraat A; Kiatpathomchai W; Tuantranont A
    J Biotechnol; 2015 Oct; 212():44-9. PubMed ID: 26277651
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Defining the limits of single-molecule FRET resolution in TIRF microscopy.
    Holden SJ; Uphoff S; Hohlbein J; Yadin D; Le Reste L; Britton OJ; Kapanidis AN
    Biophys J; 2010 Nov; 99(9):3102-11. PubMed ID: 21044609
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Amplified fluorescent sensing of DNA using luminescent carbon dots and AuNPs/GO as a sensing platform: A novel coupling of FRET and DNA hybridization for homogeneous HIV-1 gene detection at femtomolar level.
    Qaddare SH; Salimi A
    Biosens Bioelectron; 2017 Mar; 89(Pt 2):773-780. PubMed ID: 27816581
    [TBL] [Abstract][Full Text] [Related]  

  • 39. DNA strand transfer catalyzed by vaccinia topoisomerase: peroxidolysis and hydroxylaminolysis of the covalent protein-DNA intermediate.
    Krogh BO; Shuman S
    Biochemistry; 2000 May; 39(21):6422-32. PubMed ID: 10828956
    [TBL] [Abstract][Full Text] [Related]  

  • 40. FRET Imaging of Enzymatic Activities Using Smart Probes.
    Li J; Zhang Y; Cheng Z
    Methods Mol Biol; 2016; 1444():37-43. PubMed ID: 27283415
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.