These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
793 related articles for article (PubMed ID: 25268552)
1. Links between diet, gut microbiota composition and gut metabolism. Flint HJ; Duncan SH; Scott KP; Louis P Proc Nutr Soc; 2015 Feb; 74(1):13-22. PubMed ID: 25268552 [TBL] [Abstract][Full Text] [Related]
2. Formation of propionate and butyrate by the human colonic microbiota. Louis P; Flint HJ Environ Microbiol; 2017 Jan; 19(1):29-41. PubMed ID: 27928878 [TBL] [Abstract][Full Text] [Related]
3. Long-term dietary pattern of fecal donor correlates with butyrate production and markers of protein fermentation during in vitro fecal fermentation. Yang J; Rose DJ Nutr Res; 2014 Sep; 34(9):749-59. PubMed ID: 25218569 [TBL] [Abstract][Full Text] [Related]
4. High-fat feeding rather than obesity drives taxonomical and functional changes in the gut microbiota in mice. Xiao L; Sonne SB; Feng Q; Chen N; Xia Z; Li X; Fang Z; Zhang D; Fjære E; Midtbø LK; Derrien M; Hugenholtz F; Tang L; Li J; Zhang J; Liu C; Hao Q; Vogel UB; Mortensen A; Kleerebezem M; Licht TR; Yang H; Wang J; Li Y; Arumugam M; Wang J; Madsen L; Kristiansen K Microbiome; 2017 Apr; 5(1):43. PubMed ID: 28390422 [TBL] [Abstract][Full Text] [Related]
5. Phylogenetic distribution of three pathways for propionate production within the human gut microbiota. Reichardt N; Duncan SH; Young P; Belenguer A; McWilliam Leitch C; Scott KP; Flint HJ; Louis P ISME J; 2014 Jun; 8(6):1323-35. PubMed ID: 24553467 [TBL] [Abstract][Full Text] [Related]
6. Specific substrate-driven changes in human faecal microbiota composition contrast with functional redundancy in short-chain fatty acid production. Reichardt N; Vollmer M; Holtrop G; Farquharson FM; Wefers D; Bunzel M; Duncan SH; Drew JE; Williams LM; Milligan G; Preston T; Morrison D; Flint HJ; Louis P ISME J; 2018 Feb; 12(2):610-622. PubMed ID: 29192904 [TBL] [Abstract][Full Text] [Related]
7. In vitro fermentation of NUTRIOSE(®) FB06, a wheat dextrin soluble fibre, in a continuous culture human colonic model system. Hobden MR; Martin-Morales A; Guérin-Deremaux L; Wils D; Costabile A; Walton GE; Rowland I; Kennedy OB; Gibson GR PLoS One; 2013; 8(10):e77128. PubMed ID: 24204753 [TBL] [Abstract][Full Text] [Related]
8. Understanding the effects of diet on bacterial metabolism in the large intestine. Louis P; Scott KP; Duncan SH; Flint HJ J Appl Microbiol; 2007 May; 102(5):1197-208. PubMed ID: 17448155 [TBL] [Abstract][Full Text] [Related]
9. Impact of Diet-Modulated Butyrate Production on Intestinal Barrier Function and Inflammation. Bach Knudsen KE; Lærke HN; Hedemann MS; Nielsen TS; Ingerslev AK; Gundelund Nielsen DS; Theil PK; Purup S; Hald S; Schioldan AG; Marco ML; Gregersen S; Hermansen K Nutrients; 2018 Oct; 10(10):. PubMed ID: 30322146 [TBL] [Abstract][Full Text] [Related]
10. Effects of partial mixed rations and supplement amounts on milk production and composition, ruminal fermentation, bacterial communities, and ruminal acidosis. Golder HM; Denman SE; McSweeney C; Wales WJ; Auldist MJ; Wright MM; Marett LC; Greenwood JS; Hannah MC; Celi P; Bramley E; Lean IJ J Dairy Sci; 2014 Sep; 97(9):5763-85. PubMed ID: 24997657 [TBL] [Abstract][Full Text] [Related]
11. Impact of Glycosidic Bond Configuration on Short Chain Fatty Acid Production from Model Fermentable Carbohydrates by the Human Gut Microbiota. Harris HC; Edwards CA; Morrison DJ Nutrients; 2017 Jan; 9(1):. PubMed ID: 28045429 [TBL] [Abstract][Full Text] [Related]
12. The impact of long-term dietary pattern of fecal donor on in vitro fecal fermentation properties of inulin. Yang J; Rose DJ Food Funct; 2016 Apr; 7(4):1805-13. PubMed ID: 26583778 [TBL] [Abstract][Full Text] [Related]
14. Lactate cross-feeding between Zhao S; Lau R; Zhong Y; Chen M-H Appl Environ Microbiol; 2024 Jan; 90(1):e0101923. PubMed ID: 38126785 [TBL] [Abstract][Full Text] [Related]
15. The influence of diet on the gut microbiota. Scott KP; Gratz SW; Sheridan PO; Flint HJ; Duncan SH Pharmacol Res; 2013 Mar; 69(1):52-60. PubMed ID: 23147033 [TBL] [Abstract][Full Text] [Related]
16. Effect of dietary nucleosides and yeast extracts on composition and metabolic activity of infant gut microbiota in PolyFermS colonic fermentation models. Doo EH; Chassard C; Schwab C; Lacroix C FEMS Microbiol Ecol; 2017 Aug; 93(8):. PubMed ID: 28854667 [TBL] [Abstract][Full Text] [Related]
17. Kinetic modelling of lactate utilization and butyrate production by key human colonic bacterial species. Muñoz-Tamayo R; Laroche B; Walter E; Doré J; Duncan SH; Flint HJ; Leclerc M FEMS Microbiol Ecol; 2011 Jun; 76(3):615-24. PubMed ID: 21388423 [TBL] [Abstract][Full Text] [Related]
18. The Gut Microbiome, Its Metabolome, and Their Relationship to Health and Disease. Wu GD Nestle Nutr Inst Workshop Ser; 2016; 84():103-10. PubMed ID: 26764479 [TBL] [Abstract][Full Text] [Related]
19. Assessment of metabolic diversity within the intestinal microbiota from healthy humans using combined molecular and cultural approaches. Chassard C; Scott KP; Marquet P; Martin JC; Del'homme C; Dapoigny M; Flint HJ; Bernalier-Donadille A FEMS Microbiol Ecol; 2008 Dec; 66(3):496-504. PubMed ID: 18811647 [TBL] [Abstract][Full Text] [Related]
20. Rumen metagenome and metatranscriptome analyses of low methane yield sheep reveals a Sharpea-enriched microbiome characterised by lactic acid formation and utilisation. Kamke J; Kittelmann S; Soni P; Li Y; Tavendale M; Ganesh S; Janssen PH; Shi W; Froula J; Rubin EM; Attwood GT Microbiome; 2016 Oct; 4(1):56. PubMed ID: 27760570 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]