These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 25268625)

  • 1. Hope for GWAS: relevant risk genes uncovered from GWAS statistical noise.
    Correia C; Diekmann Y; Vicente AM; Pereira-Leal JB
    Int J Mol Sci; 2014 Sep; 15(10):17601-21. PubMed ID: 25268625
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protein interaction networks reveal novel autism risk genes within GWAS statistical noise.
    Correia C; Oliveira G; Vicente AM
    PLoS One; 2014; 9(11):e112399. PubMed ID: 25409314
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protein-Protein interactions uncover candidate 'core genes' within omnigenic disease networks.
    Ratnakumar A; Weinhold N; Mar JC; Riaz N
    PLoS Genet; 2020 Jul; 16(7):e1008903. PubMed ID: 32678846
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Finding lost genes in GWAS via integrative-omics analysis reveals novel sub-networks associated with preterm birth.
    Brubaker D; Liu Y; Wang J; Tan H; Zhang G; Jacobsson B; Muglia L; Mesiano S; Chance MR
    Hum Mol Genet; 2016 Dec; 25(23):5254-5264. PubMed ID: 27664809
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Boosting GWAS using biological networks: A study on susceptibility to familial breast cancer.
    Climente-González H; Lonjou C; Lesueur F; ; Stoppa-Lyonnet D; Andrieu N; Azencott CA
    PLoS Comput Biol; 2021 Mar; 17(3):e1008819. PubMed ID: 33735170
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dissecting the heritable risk of breast cancer: From statistical methods to susceptibility genes.
    Fanfani V; Zatopkova M; Harris AL; Pezzella F; Stracquadanio G
    Semin Cancer Biol; 2021 Jul; 72():175-184. PubMed ID: 32569822
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hints of hidden heritability in GWAS.
    Gibson G
    Nat Genet; 2010 Jul; 42(7):558-60. PubMed ID: 20581876
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Leveraging multiple gene networks to prioritize GWAS candidate genes via network representation learning.
    Wu M; Zeng W; Liu W; Lv H; Chen T; Jiang R
    Methods; 2018 Aug; 145():41-50. PubMed ID: 29874547
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantifying the underestimation of relative risks from genome-wide association studies.
    Spencer C; Hechter E; Vukcevic D; Donnelly P
    PLoS Genet; 2011 Mar; 7(3):e1001337. PubMed ID: 21437273
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Trans-ethnic predicted expression genome-wide association analysis identifies a gene for estrogen receptor-negative breast cancer.
    Gao G; Pierce BL; Olopade OI; Im HK; Huo D
    PLoS Genet; 2017 Sep; 13(9):e1006727. PubMed ID: 28957356
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On beyond GWAS.
    Nat Genet; 2010 Jul; 42(7):551. PubMed ID: 20581872
    [TBL] [Abstract][Full Text] [Related]  

  • 12. GPA: a statistical approach to prioritizing GWAS results by integrating pleiotropy and annotation.
    Chung D; Yang C; Li C; Gelernter J; Zhao H
    PLoS Genet; 2014 Nov; 10(11):e1004787. PubMed ID: 25393678
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rare Coding Variants Associated with Breast Cancer.
    Han MR
    Adv Exp Med Biol; 2021; 1187():435-453. PubMed ID: 33983593
    [TBL] [Abstract][Full Text] [Related]  

  • 14. ancGWAS: a post genome-wide association study method for interaction, pathway and ancestry analysis in homogeneous and admixed populations.
    Chimusa ER; Mbiyavanga M; Mazandu GK; Mulder NJ
    Bioinformatics; 2016 Feb; 32(4):549-56. PubMed ID: 26508762
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The combination of a genome-wide association study of lymphocyte count and analysis of gene expression data reveals novel asthma candidate genes.
    Cusanovich DA; Billstrand C; Zhou X; Chavarria C; De Leon S; Michelini K; Pai AA; Ober C; Gilad Y
    Hum Mol Genet; 2012 May; 21(9):2111-23. PubMed ID: 22286170
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Next-Gen GWAS: full 2D epistatic interaction maps retrieve part of missing heritability and improve phenotypic prediction.
    Carré C; Carluer JB; Chaux C; Estoup-Streiff C; Roche N; Hosy E; Mas A; Krouk G
    Genome Biol; 2024 Mar; 25(1):76. PubMed ID: 38523316
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Network models of genome-wide association studies uncover the topological centrality of protein interactions in complex diseases.
    Lee Y; Li H; Li J; Rebman E; Achour I; Regan KE; Gamazon ER; Chen JL; Yang XH; Cox NJ; Lussier YA
    J Am Med Inform Assoc; 2013; 20(4):619-29. PubMed ID: 23355459
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional genomics of candidate genes derived from genome-wide association studies for five common neurological diseases.
    Guio-Vega GP; Forero DA
    Int J Neurosci; 2017 Feb; 127(2):118-123. PubMed ID: 26829381
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of breast cancer associated variants that modulate transcription factor binding.
    Liu Y; Walavalkar NM; Dozmorov MG; Rich SS; Civelek M; Guertin MJ
    PLoS Genet; 2017 Sep; 13(9):e1006761. PubMed ID: 28957321
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integrative genomics analysis of eQTL and GWAS summary data identifies PPP1CB as a novel bone mineral density risk genes.
    Zhai Y; Yu L; Shao Y; Wang J
    Biosci Rep; 2020 Apr; 40(4):. PubMed ID: 32266926
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.