These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
225 related articles for article (PubMed ID: 25268729)
41. WAPK, a Ser/Thr protein kinase gene of Nicotiana tabacum, is uniquely regulated by wounding, abscisic acid and methyl jasmonate. Lee SH; Lee MH; Chung WI; Liu JR Mol Gen Genet; 1998 Sep; 259(5):516-22. PubMed ID: 9790583 [TBL] [Abstract][Full Text] [Related]
42. Metabolism of [14C]nicotine in wild species of Nicotiana. Minozhedinova NS; Lovkova MY; Ibraeva BS Biol Bull Acad Sci USSR; 1978; 5(3):299-305. PubMed ID: 751691 [TBL] [Abstract][Full Text] [Related]
43. Expression of geminiviral AC2 RNA silencing suppressor changes sugar and jasmonate responsive gene expression in transgenic tobacco plants. Soitamo AJ; Jada B; Lehto K BMC Plant Biol; 2012 Nov; 12():204. PubMed ID: 23130567 [TBL] [Abstract][Full Text] [Related]
44. Stress-induced expression of NICOTINE2-locus genes and their homologs encoding Ethylene Response Factor transcription factors in tobacco. Shoji T; Hashimoto T Phytochemistry; 2015 May; 113():41-9. PubMed ID: 24947337 [TBL] [Abstract][Full Text] [Related]
45. Genetic regulation and manipulation of nicotine biosynthesis in tobacco: strategies to eliminate addictive alkaloids. Shoji T; Hashimoto T; Saito K J Exp Bot; 2024 Mar; 75(6):1741-1753. PubMed ID: 37647764 [TBL] [Abstract][Full Text] [Related]
46. Deep sequencing reveals transcriptome re-programming of Polygonum multiflorum thunb. roots to the elicitation with methyl jasmonate. Liu H; Wu W; Hou K; Chen J; Zhao Z Mol Genet Genomics; 2016 Feb; 291(1):337-48. PubMed ID: 26342927 [TBL] [Abstract][Full Text] [Related]
47. RNAi-mediated down-regulation of ornithine decarboxylase (ODC) impedes wound-stress stimulation of anabasine synthesis in Nicotiana glauca. DeBoer KD; Dalton HL; Edward FJ; Ryan SM; Hamill JD Phytochemistry; 2013 Feb; 86():21-8. PubMed ID: 23177980 [TBL] [Abstract][Full Text] [Related]
48. Tobacco transcription factors NtMYC2a and NtMYC2b form nuclear complexes with the NtJAZ1 repressor and regulate multiple jasmonate-inducible steps in nicotine biosynthesis. Zhang HB; Bokowiec MT; Rushton PJ; Han SC; Timko MP Mol Plant; 2012 Jan; 5(1):73-84. PubMed ID: 21746701 [TBL] [Abstract][Full Text] [Related]
49. Tobacco nicotine uptake permease (NUP1) affects alkaloid metabolism. Hildreth SB; Gehman EA; Yang H; Lu RH; Ritesh KC; Harich KC; Yu S; Lin J; Sandoe JL; Okumoto S; Murphy AS; Jelesko JG Proc Natl Acad Sci U S A; 2011 Nov; 108(44):18179-84. PubMed ID: 22006310 [TBL] [Abstract][Full Text] [Related]
50. Comparative transcriptome analyses revealed differential strategies of roots and leaves from methyl jasmonate treatment Baphicacanthus cusia (Nees) Bremek and differentially expressed genes involved in tryptophan biosynthesis. Lin W; Huang W; Ning S; Gong X; Ye Q; Wei D PLoS One; 2019; 14(3):e0212863. PubMed ID: 30865659 [TBL] [Abstract][Full Text] [Related]
51. Herbivore-induced ethylene suppresses a direct defense but not a putative indirect defense against an adapted herbivore. Kahl J; Siemens DH; Aerts RJ; Gäbler R; Kühnemann F; Preston CA; Baldwin IT Planta; 2000 Jan; 210(2):336-42. PubMed ID: 10664141 [TBL] [Abstract][Full Text] [Related]
52. Expression analysis of jasmonate-responsive lectins in plants. Lannoo N; Van Damme EJ Methods Mol Biol; 2013; 1011():251-63. PubMed ID: 23616002 [TBL] [Abstract][Full Text] [Related]
53. Jasmonates and its mimics differentially elicit systemic defence responses in Nicotiana attenuata. Pluskota WE; Qu N; Maitrejean M; Boland W; Baldwin IT J Exp Bot; 2007; 58(15-16):4071-82. PubMed ID: 18065767 [TBL] [Abstract][Full Text] [Related]
54. A novel R2R3 MYB transcription factor NtMYBJS1 is a methyl jasmonate-dependent regulator of phenylpropanoid-conjugate biosynthesis in tobacco. Gális I; Simek P; Narisawa T; Sasaki M; Horiguchi T; Fukuda H; Matsuoka K Plant J; 2006 May; 46(4):573-92. PubMed ID: 16640595 [TBL] [Abstract][Full Text] [Related]
55. Molecular evolution of N-methylputrescine oxidase in tobacco. Naconsie M; Kato K; Shoji T; Hashimoto T Plant Cell Physiol; 2014 Feb; 55(2):436-44. PubMed ID: 24287136 [TBL] [Abstract][Full Text] [Related]
56. Suppression of pyrrolidine ring biosynthesis and its effects on gene expression and subsequent accumulation of anatabine in leaves of tobacco (N. tabacum L.). Kaminski KP; Bovet L; Hilfiker A; Laparra H; Schwaar J; Sierro N; Lang G; De Palo D; Guy PA; Laszlo C; Goepfert S; Ivanov NV BMC Genomics; 2023 Sep; 24(1):516. PubMed ID: 37667170 [TBL] [Abstract][Full Text] [Related]
57. The presence of jasmonate-inducible lectin genes in some but not all Nicotiana species explains a marked intragenus difference in plant responses to hormone treatment. Lannoo N; Peumans WJ; Van Damme EJ J Exp Bot; 2006; 57(12):3145-55. PubMed ID: 16893977 [TBL] [Abstract][Full Text] [Related]
58. Genetic attenuation of alkaloids and nicotine content in tobacco (Nicotiana tabacum). Hidalgo Martinez D; Payyavula RS; Kudithipudi C; Shen Y; Xu D; Warek U; Strickland JA; Melis A Planta; 2020 Apr; 251(4):92. PubMed ID: 32242247 [TBL] [Abstract][Full Text] [Related]
59. The A and B loci in tobacco regulate a network of stress response genes, few of which are associated with nicotine biosynthesis. Kidd SK; Melillo AA; Lu RH; Reed DG; Kuno N; Uchida K; Furuya M; Jelesko JG Plant Mol Biol; 2006 Mar; 60(5):699-716. PubMed ID: 16649107 [TBL] [Abstract][Full Text] [Related]
60. Anabasine and anatabine as biomarkers for tobacco use during nicotine replacement therapy. Jacob P; Hatsukami D; Severson H; Hall S; Yu L; Benowitz NL Cancer Epidemiol Biomarkers Prev; 2002 Dec; 11(12):1668-73. PubMed ID: 12496059 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]