These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 25268770)

  • 1. A simple extension to the CMASA method for the prediction of catalytic residues in the presence of single point mutations.
    Flores DI; Sotelo-Mundo RR; Brizuela CA
    PLoS One; 2014; 9(9):e108513. PubMed ID: 25268770
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CMASA: an accurate algorithm for detecting local protein structural similarity and its application to enzyme catalytic site annotation.
    Li GH; Huang JF
    BMC Bioinformatics; 2010 Aug; 11():439. PubMed ID: 20796320
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced performance in prediction of protein active sites with THEMATICS and support vector machines.
    Tong W; Williams RJ; Wei Y; Murga LF; Ko J; Ondrechen MJ
    Protein Sci; 2008 Feb; 17(2):333-41. PubMed ID: 18096640
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of catalytic residues from protein structure using support vector machine with sequence and structural features.
    Pugalenthi G; Kumar KK; Suganthan PN; Gangal R
    Biochem Biophys Res Commun; 2008 Mar; 367(3):630-4. PubMed ID: 18206645
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Accurate prediction of protein catalytic residues by side chain orientation and residue contact density.
    Chien YT; Huang SW
    PLoS One; 2012; 7(10):e47951. PubMed ID: 23110141
    [TBL] [Abstract][Full Text] [Related]  

  • 6. EXIA2: web server of accurate and rapid protein catalytic residue prediction.
    Lu CH; Yu CS; Chien YT; Huang SW
    Biomed Res Int; 2014; 2014():807839. PubMed ID: 25295274
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CSmetaPred: a consensus method for prediction of catalytic residues.
    Choudhary P; Kumar S; Bachhawat AK; Pandit SB
    BMC Bioinformatics; 2017 Dec; 18(1):583. PubMed ID: 29273005
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rapid catalytic template searching as an enzyme function prediction procedure.
    Nilmeier JP; Kirshner DA; Wong SE; Lightstone FC
    PLoS One; 2013; 8(5):e62535. PubMed ID: 23675414
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SABER: a computational method for identifying active sites for new reactions.
    Nosrati GR; Houk KN
    Protein Sci; 2012 May; 21(5):697-706. PubMed ID: 22492397
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Segmental motions of rat thymidylate synthase leading to half-the-sites behavior.
    Swiniarska M; Leś A; Rode W; Cieśla J; Millán-Pacheco C; Blake IO; Pastor N
    Biopolymers; 2010 Jun; 93(6):549-59. PubMed ID: 20095045
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Disruption of the crossover helix impairs dihydrofolate reductase activity in the bifunctional enzyme TS-DHFR from Cryptosporidium hominis.
    Vargo MA; Martucci WE; Anderson KS
    Biochem J; 2009 Feb; 417(3):757-64. PubMed ID: 18851711
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An improved prediction of catalytic residues in enzyme structures.
    Tang YR; Sheng ZY; Chen YZ; Zhang Z
    Protein Eng Des Sel; 2008 May; 21(5):295-302. PubMed ID: 18287176
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Networks of high mutual information define the structural proximity of catalytic sites: implications for catalytic residue identification.
    Marino Buslje C; Teppa E; Di Doménico T; Delfino JM; Nielsen M
    PLoS Comput Biol; 2010 Nov; 6(11):e1000978. PubMed ID: 21079665
    [TBL] [Abstract][Full Text] [Related]  

  • 14. L1pred: a sequence-based prediction tool for catalytic residues in enzymes with the L1-logreg classifier.
    Dou Y; Wang J; Yang J; Zhang C
    PLoS One; 2012; 7(4):e35666. PubMed ID: 22558194
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prediction of active site cleft using support vector machines.
    Sonavane S; Chakrabarti P
    J Chem Inf Model; 2010 Dec; 50(12):2266-73. PubMed ID: 21080689
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure-based kernels for the prediction of catalytic residues and their involvement in human inherited disease.
    Xin F; Myers S; Li YF; Cooper DN; Mooney SD; Radivojac P
    Bioinformatics; 2010 Aug; 26(16):1975-82. PubMed ID: 20551136
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predicting and annotating catalytic residues: an information theoretic approach.
    Sterner B; Singh R; Berger B
    J Comput Biol; 2007 Oct; 14(8):1058-73. PubMed ID: 17887954
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protein structure based prediction of catalytic residues.
    Fajardo JE; Fiser A
    BMC Bioinformatics; 2013 Feb; 14():63. PubMed ID: 23433045
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Replacement of Val3 in human thymidylate synthase affects its kinetic properties and intracellular stability .
    Huang X; Gibson LM; Bell BJ; Lovelace LL; Peña MM; Berger FG; Berger SH; Lebioda L
    Biochemistry; 2010 Mar; 49(11):2475-82. PubMed ID: 20151707
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detection of protein catalytic residues at high precision using local network properties.
    Slama P; Filippis I; Lappe M
    BMC Bioinformatics; 2008 Dec; 9():517. PubMed ID: 19055796
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.