These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
228 related articles for article (PubMed ID: 25268789)
1. Knockdown of phospholipase C-β1 in the medial prefrontal cortex of male mice impairs working memory among multiple schizophrenia endophenotypes. Kim SW; Seo M; Kim DS; Kang M; Kim YS; Koh HY; Shin HS J Psychiatry Neurosci; 2015 Mar; 40(2):78-88. PubMed ID: 25268789 [TBL] [Abstract][Full Text] [Related]
2. High-Frequency Neuronal Oscillatory Abnormalities in the Phospholipase C-β1 Knockout Mouse Model of Schizophrenia. Hudson MR; Hannan AJ; O'Brien TJ; Jones NC Int J Neuropsychopharmacol; 2019 Mar; 22(3):221-231. PubMed ID: 30517689 [TBL] [Abstract][Full Text] [Related]
3. PLC-beta1 knockout mice as a model of disrupted cortical development and plasticity: behavioral endophenotypes and dysregulation of RGS4 gene expression. McOmish CE; Burrows EL; Howard M; Hannan AJ Hippocampus; 2008; 18(8):824-34. PubMed ID: 18493969 [TBL] [Abstract][Full Text] [Related]
4. Phospholipase C-β1 Hypofunction in the Pathogenesis of Schizophrenia. Kim SW; Cho T; Lee S Front Psychiatry; 2015; 6():159. PubMed ID: 26635636 [TBL] [Abstract][Full Text] [Related]
5. Increased adult hippocampal neurogenesis and abnormal migration of adult-born granule neurons is associated with hippocampal-specific cognitive deficits in phospholipase C-β1 knockout mice. Manning EE; Ransome MI; Burrows EL; Hannan AJ Hippocampus; 2012 Feb; 22(2):309-19. PubMed ID: 21080410 [TBL] [Abstract][Full Text] [Related]
6. Deficits in social behavior and sensorimotor gating in mice lacking phospholipase Cbeta1. Koh HY; Kim D; Lee J; Lee S; Shin HS Genes Brain Behav; 2008 Feb; 7(1):120-8. PubMed ID: 17696993 [TBL] [Abstract][Full Text] [Related]
7. Phospholipase C-beta1 knockout mice exhibit endophenotypes modeling schizophrenia which are rescued by environmental enrichment and clozapine administration. McOmish CE; Burrows E; Howard M; Scarr E; Kim D; Shin HS; Dean B; van den Buuse M; Hannan AJ Mol Psychiatry; 2008 Jul; 13(7):661-72. PubMed ID: 17667964 [TBL] [Abstract][Full Text] [Related]
9. Sensitivity to MK-801 in phospholipase C-β1 knockout mice reveals a specific NMDA receptor deficit. Gray L; McOmish CE; Scarr E; Dean B; Hannan AJ Int J Neuropsychopharmacol; 2009 Aug; 12(7):917-28. PubMed ID: 19236734 [TBL] [Abstract][Full Text] [Related]
10. Disturbed Prefrontal Cortex Activity in the Absence of Schizophrenia-Like Behavioral Dysfunction in Gao X; Grendel J; Muhia M; Castro-Gomez S; Süsens U; Isbrandt D; Kneussel M; Kuhl D; Ohana O J Neurosci; 2019 Oct; 39(41):8149-8163. PubMed ID: 31488612 [No Abstract] [Full Text] [Related]
11. Comprehensive behavioral study of mGluR3 knockout mice: implication in schizophrenia related endophenotypes. Fujioka R; Nii T; Iwaki A; Shibata A; Ito I; Kitaichi K; Nomura M; Hattori S; Takao K; Miyakawa T; Fukumaki Y Mol Brain; 2014 Apr; 7():31. PubMed ID: 24758191 [TBL] [Abstract][Full Text] [Related]
12. Development of the MAM model of schizophrenia in mice: Sex similarities and differences of hippocampal and prefrontal cortical function. Chalkiadaki K; Velli A; Kyriazidis E; Stavroulaki V; Vouvoutsis V; Chatzaki E; Aivaliotis M; Sidiropoulou K Neuropharmacology; 2019 Jan; 144():193-207. PubMed ID: 30366002 [TBL] [Abstract][Full Text] [Related]
13. Decreased nesting behavior, selective increases in locomotor activity in a novel environment, and paradoxically increased open arm exploration in Neurogranin knockout mice. Nakajima R; Hattori S; Funasaka T; Huang FL; Miyakawa T Neuropsychopharmacol Rep; 2021 Mar; 41(1):111-116. PubMed ID: 33270377 [TBL] [Abstract][Full Text] [Related]
14. Volumetric brain differences between the Roman rat strains: Neonatal handling effects, sensorimotor gating and working memory. Río-Álamos C; Piludu MA; Gerbolés C; Barroso D; Oliveras I; Sánchez-González A; Cañete T; Tapias-Espinosa C; Sampedro-Viana D; Torrubia R; Tobeña A; Fernández-Teruel A Behav Brain Res; 2019 Apr; 361():74-85. PubMed ID: 30576720 [TBL] [Abstract][Full Text] [Related]
15. Disrupting the nNOS/NOS1AP interaction in the medial prefrontal cortex impairs social recognition and spatial working memory in mice. Candemir E; Fattakhov N; Leary AO; Slattery DA; Courtney MJ; Reif A; Freudenberg F Eur Neuropsychopharmacol; 2023 Feb; 67():66-79. PubMed ID: 36513018 [TBL] [Abstract][Full Text] [Related]
16. Medial prefrontal cortical synapsin II knock-down induces behavioral abnormalities in the rat: examining synapsin II in the pathophysiology of schizophrenia. Dyck BA; Beyaert MG; Ferro MA; Mishra RK Schizophr Res; 2011 Aug; 130(1-3):250-9. PubMed ID: 21689907 [TBL] [Abstract][Full Text] [Related]
17. Abnormalities in behaviour, histology and prefrontal cortical gene expression profiles relevant to schizophrenia in embryonic day 17 MAM-Exposed C57BL/6 mice. Huo C; Liu X; Zhao J; Zhao T; Huang H; Ye H Neuropharmacology; 2018 Sep; 140():287-301. PubMed ID: 30056124 [TBL] [Abstract][Full Text] [Related]
18. Ibotenic acid induced lesions impair the modulation of dendritic spine plasticity in the prefrontal cortex and amygdala, a phenomenon that underlies working memory and social behavior. Martínez-Torres NI; Vázquez-Hernández N; Martín-Amaya-Barajas FL; Flores-Soto M; González-Burgos I Eur J Pharmacol; 2021 Apr; 896():173883. PubMed ID: 33513334 [TBL] [Abstract][Full Text] [Related]
19. Downregulation of 5-hydroxytryptamine Zhang W; Liu J; Feng J; Jia M; Zhang G; Wen X Behav Brain Res; 2018 Apr; 341():212-223. PubMed ID: 29278697 [TBL] [Abstract][Full Text] [Related]
20. Huang MW; Lin YJ; Chang CW; Lei FJ; Ho EP; Liu RS; Shyu WC; Hsieh CH Theranostics; 2018; 8(17):4781-4794. PubMed ID: 30279737 [No Abstract] [Full Text] [Related] [Next] [New Search]