These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

613 related articles for article (PubMed ID: 25268880)

  • 1. Stable quantum dot photoelectrolysis cell for unassisted visible light solar water splitting.
    Yang HB; Miao J; Hung SF; Huo F; Chen HM; Liu B
    ACS Nano; 2014 Oct; 8(10):10403-13. PubMed ID: 25268880
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling, simulation, and fabrication of a fully integrated, acid-stable, scalable solar-driven water-splitting system.
    Walczak K; Chen Y; Karp C; Beeman JW; Shaner M; Spurgeon J; Sharp ID; Amashukeli X; West W; Jin J; Lewis NS; Xiang C
    ChemSusChem; 2015 Feb; 8(3):544-51. PubMed ID: 25581231
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Roles of cocatalysts in photocatalysis and photoelectrocatalysis.
    Yang J; Wang D; Han H; Li C
    Acc Chem Res; 2013 Aug; 46(8):1900-9. PubMed ID: 23530781
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photocatalytic Synthesis of CdS(core)-CdSe(shell) Quantum Dots with a Heteroepitaxial Junction on TiO
    Kitazono K; Akashi R; Fujiwara K; Akita A; Naya SI; Fujishima M; Tada H
    Chemphyschem; 2017 Oct; 18(20):2840-2845. PubMed ID: 28833927
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Visible light water splitting using dye-sensitized oxide semiconductors.
    Youngblood WJ; Lee SH; Maeda K; Mallouk TE
    Acc Chem Res; 2009 Dec; 42(12):1966-73. PubMed ID: 19905000
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Metal-Nitride Nanowire Dual-Photoelectrode Device for Unassisted Solar-to-Hydrogen Conversion under Parallel Illumination.
    AlOtaibi B; Fan S; Vanka S; Kibria MG; Mi Z
    Nano Lett; 2015 Oct; 15(10):6821-8. PubMed ID: 26360182
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stable hydrogen generation from vermiculite sensitized by CdS quantum dot photocatalytic splitting of water under visible-light irradiation.
    Zhang J; Zhu W; Liu X
    Dalton Trans; 2014 Jun; 43(24):9296-302. PubMed ID: 24819860
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photocatalytic hydrogen evolution from glycerol and water over nickel-hybrid cadmium sulfide quantum dots under visible-light irradiation.
    Wang JJ; Li ZJ; Li XB; Fan XB; Meng QY; Yu S; Li CB; Li JX; Tung CH; Wu LZ
    ChemSusChem; 2014 May; 7(5):1468-75. PubMed ID: 24692310
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficient visible light photocatalyst fabricated by depositing plasmonic Ag nanoparticles on conductive polymer-protected Si nanowire arrays for photoelectrochemical hydrogen generation.
    Duan C; Wang H; Ou X; Li F; Zhang X
    ACS Appl Mater Interfaces; 2014 Jun; 6(12):9742-50. PubMed ID: 24865360
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Self-biasing photoelectrochemical cell for spontaneous overall water splitting under visible-light illumination.
    Chen Q; Li J; Li X; Huang K; Zhou B; Shangguan W
    ChemSusChem; 2013 Jul; 6(7):1276-81. PubMed ID: 23775929
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reduced charge recombination in a co-sensitized quantum dot solar cell with two different sizes of CdSe quantum dot.
    Chen J; Lei W; Deng WQ
    Nanoscale; 2011 Feb; 3(2):674-7. PubMed ID: 21132215
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Overall Photoelectrochemical Water Splitting using Tandem Cell under Simulated Sunlight.
    Kim JH; Kaneko H; Minegishi T; Kubota J; Domen K; Lee JS
    ChemSusChem; 2016 Jan; 9(1):61-6. PubMed ID: 26668101
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Utilization of Metal Sulfide Material of (CuGa)(1-x)Zn(2x)S2 Solid Solution with Visible Light Response in Photocatalytic and Photoelectrochemical Solar Water Splitting Systems.
    Kato T; Hakari Y; Ikeda S; Jia Q; Iwase A; Kudo A
    J Phys Chem Lett; 2015 Mar; 6(6):1042-7. PubMed ID: 26262867
    [TBL] [Abstract][Full Text] [Related]  

  • 14. One-step overall water splitting under visible light using multiband InGaN/GaN nanowire heterostructures.
    Kibria MG; Nguyen HP; Cui K; Zhao S; Liu D; Guo H; Trudeau ML; Paradis S; Hakima AR; Mi Z
    ACS Nano; 2013 Sep; 7(9):7886-93. PubMed ID: 23957654
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Solar fuels via artificial photosynthesis.
    Gust D; Moore TA; Moore AL
    Acc Chem Res; 2009 Dec; 42(12):1890-8. PubMed ID: 19902921
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cobalt phosphate-modified barium-doped tantalum nitride nanorod photoanode with 1.5% solar energy conversion efficiency.
    Li Y; Zhang L; Torres-Pardo A; González-Calbet JM; Ma Y; Oleynikov P; Terasaki O; Asahina S; Shima M; Cha D; Zhao L; Takanabe K; Kubota J; Domen K
    Nat Commun; 2013; 4():2566. PubMed ID: 24089138
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Accumulative charge separation for solar fuels production: coupling light-induced single electron transfer to multielectron catalysis.
    Hammarström L
    Acc Chem Res; 2015 Mar; 48(3):840-50. PubMed ID: 25675365
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Perovskite Photovoltaic Integrated CdS/TiO
    Karuturi SK; Shen H; Duong T; Narangari PR; Yew R; Wong-Leung J; Catchpole K; Tan HH; Jagadish C
    ACS Appl Mater Interfaces; 2018 Jul; 10(28):23766-23773. PubMed ID: 29939003
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced photoelectrochemical performance of quantum dot-sensitized TiO2 nanotube arrays with Al2O3 overcoating by atomic layer deposition.
    Zeng M; Peng X; Liao J; Wang G; Li Y; Li J; Qin Y; Wilson J; Song A; Lin S
    Phys Chem Chem Phys; 2016 Jun; 18(26):17404-13. PubMed ID: 27138558
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst.
    Zou Z; Ye J; Sayama K; Arakawa H
    Nature; 2001 Dec; 414(6864):625-7. PubMed ID: 11740556
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 31.