These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
185 related articles for article (PubMed ID: 25268881)
1. Identification of essential proteins based on ranking edge-weights in protein-protein interaction networks. Wang Y; Sun H; Du W; Blanzieri E; Viero G; Xu Y; Liang Y PLoS One; 2014; 9(9):e108716. PubMed ID: 25268881 [TBL] [Abstract][Full Text] [Related]
2. Essential protein identification based on essential protein-protein interaction prediction by Integrated Edge Weights. Jiang Y; Wang Y; Pang W; Chen L; Sun H; Liang Y; Blanzieri E Methods; 2015 Jul; 83():51-62. PubMed ID: 25892709 [TBL] [Abstract][Full Text] [Related]
3. A novel extended Pareto Optimality Consensus model for predicting essential proteins. Li G; Li M; Peng W; Li Y; Pan Y; Wang J J Theor Biol; 2019 Nov; 480():141-149. PubMed ID: 31398315 [TBL] [Abstract][Full Text] [Related]
4. A novel method to predict essential proteins based on tensor and HITS algorithm. Zhang Z; Luo Y; Hu S; Li X; Wang L; Zhao B Hum Genomics; 2020 Apr; 14(1):14. PubMed ID: 32252824 [TBL] [Abstract][Full Text] [Related]
5. A Central Edge Selection Based Overlapping Community Detection Algorithm for the Detection of Overlapping Structures in Protein⁻Protein Interaction Networks. Zhang F; Ma A; Wang Z; Ma Q; Liu B; Huang L; Wang Y Molecules; 2018 Oct; 23(10):. PubMed ID: 30322177 [TBL] [Abstract][Full Text] [Related]
6. A novel essential protein identification method based on PPI networks and gene expression data. Zhong J; Tang C; Peng W; Xie M; Sun Y; Tang Q; Xiao Q; Yang J BMC Bioinformatics; 2021 May; 22(1):248. PubMed ID: 33985429 [TBL] [Abstract][Full Text] [Related]
7. Iteration method for predicting essential proteins based on orthology and protein-protein interaction networks. Peng W; Wang J; Wang W; Liu Q; Wu FX; Pan Y BMC Syst Biol; 2012 Jul; 6():87. PubMed ID: 22808943 [TBL] [Abstract][Full Text] [Related]
8. Identifying essential proteins from active PPI networks constructed with dynamic gene expression. Xiao Q; Wang J; Peng X; Wu FX; Pan Y BMC Genomics; 2015; 16 Suppl 3(Suppl 3):S1. PubMed ID: 25707432 [TBL] [Abstract][Full Text] [Related]
9. A thorough analysis of the contribution of experimental, derived and sequence-based predicted protein-protein interactions for functional annotation of proteins. Makrodimitris S; Reinders M; van Ham R PLoS One; 2020; 15(11):e0242723. PubMed ID: 33237964 [TBL] [Abstract][Full Text] [Related]
10. Identification of Essential Proteins Based on a New Combination of Local Interaction Density and Protein Complexes. Luo J; Qi Y PLoS One; 2015; 10(6):e0131418. PubMed ID: 26125187 [TBL] [Abstract][Full Text] [Related]
11. Identifying essential proteins based on sub-network partition and prioritization by integrating subcellular localization information. Li M; Li W; Wu FX; Pan Y; Wang J J Theor Biol; 2018 Jun; 447():65-73. PubMed ID: 29571709 [TBL] [Abstract][Full Text] [Related]
12. Essential Protein Detection by Random Walk on Weighted Protein-Protein Interaction Networks. Xu B; Guan J; Wang Y; Wang Z IEEE/ACM Trans Comput Biol Bioinform; 2019; 16(2):377-387. PubMed ID: 28504946 [TBL] [Abstract][Full Text] [Related]
13. An iteration method for identifying yeast essential proteins from heterogeneous network. Zhao B; Zhao Y; Zhang X; Zhang Z; Zhang F; Wang L BMC Bioinformatics; 2019 Jun; 20(1):355. PubMed ID: 31234779 [TBL] [Abstract][Full Text] [Related]
14. UDoNC: An Algorithm for Identifying Essential Proteins Based on Protein Domains and Protein-Protein Interaction Networks. Peng W; Wang J; Cheng Y; Lu Y; Wu F; Pan Y IEEE/ACM Trans Comput Biol Bioinform; 2015; 12(2):276-88. PubMed ID: 26357216 [TBL] [Abstract][Full Text] [Related]
15. Protein-protein Interaction Networks of E. coli and S. cerevisiae are similar. Wuchty S; Uetz P Sci Rep; 2014 Nov; 4():7187. PubMed ID: 25431098 [TBL] [Abstract][Full Text] [Related]
16. A new method for the discovery of essential proteins. Zhang X; Xu J; Xiao WX PLoS One; 2013; 8(3):e58763. PubMed ID: 23555595 [TBL] [Abstract][Full Text] [Related]
17. United Neighborhood Closeness Centrality and Orthology for Predicting Essential Proteins. Li G; Li M; Wang J; Li Y; Pan Y IEEE/ACM Trans Comput Biol Bioinform; 2020; 17(4):1451-1458. PubMed ID: 30596582 [TBL] [Abstract][Full Text] [Related]
18. A multi-network clustering method for detecting protein complexes from multiple heterogeneous networks. Ou-Yang L; Yan H; Zhang XF BMC Bioinformatics; 2017 Dec; 18(Suppl 13):463. PubMed ID: 29219066 [TBL] [Abstract][Full Text] [Related]
19. Development and implementation of an algorithm for detection of protein complexes in large interaction networks. Altaf-Ul-Amin M; Shinbo Y; Mihara K; Kurokawa K; Kanaya S BMC Bioinformatics; 2006 Apr; 7():207. PubMed ID: 16613608 [TBL] [Abstract][Full Text] [Related]
20. DiffSLC: A graph centrality method to detect essential proteins of a protein-protein interaction network. Mistry D; Wise RP; Dickerson JA PLoS One; 2017; 12(11):e0187091. PubMed ID: 29121073 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]