These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
116 related articles for article (PubMed ID: 25269492)
1. [Changes of Mu-opioid receptor and neuron-restrictive silencer factor in periaquductal gray in mouse models of remifentanil-induced postoperative hyperalgesia]. Kong M; Shi L; Zhou Y; He J; Zhang W; Gu X; Zhang J; Ma Z Zhong Nan Da Xue Xue Bao Yi Xue Ban; 2014 Sep; 39(9):901-6. PubMed ID: 25269492 [TBL] [Abstract][Full Text] [Related]
2. Neuron-restrictive silencer factor in periaqueductal gray contributes to remifentanil-induced postoperative hyperalgesia via repression of the mu-opioid receptor. Lu C; Shi L; Zhang J; Kong M; Liu Y; Zhou Y; Xu L; He J; Ma Z; Gu X J Neurol Sci; 2015 May; 352(1-2):48-52. PubMed ID: 25819118 [TBL] [Abstract][Full Text] [Related]
3. [Role of spinal P2X4 receptor in remifentanil-induced postoperative hyperalgesia]. Qing W; Yan J; Zhang C; Zhang J; Zhai Z; Hu J Zhong Nan Da Xue Xue Bao Yi Xue Ban; 2019 Apr; 44(4):370-376. PubMed ID: 31113911 [TBL] [Abstract][Full Text] [Related]
4. Dezocine attenuates the remifentanil-induced postoperative hyperalgesia by inhibition of phosphorylation of CaMKⅡα. Zhou J; Qi F; Hu Z; Zhang L; Li Z; Wang ZJ; Tang H; Chen Z Eur J Pharmacol; 2020 Feb; 869():172882. PubMed ID: 31863769 [TBL] [Abstract][Full Text] [Related]
5. The pro-nociceptive effects of remifentanil or surgical injury in mice are associated with a decrease in delta-opioid receptor mRNA levels: Prevention of the nociceptive response by on-site delivery of enkephalins. Cabañero D; Célérier E; García-Nogales P; Mata M; Roques BP; Maldonado R; Puig MM Pain; 2009 Jan; 141(1-2):88-96. PubMed ID: 19058913 [TBL] [Abstract][Full Text] [Related]
6. The role of p38MAPK activation in spinal dorsal horn in remifentanil-induced postoperative hyperalgesia in rats. Deng L; Zhang L; Zhao H; Song F; Chen G; Zhu H Neurol Res; 2016 Oct; 38(10):929-36. PubMed ID: 27687719 [TBL] [Abstract][Full Text] [Related]
7. Ketamine reduces remifentanil-induced postoperative hyperalgesia mediated by CaMKII-NMDAR in the primary somatosensory cerebral cortex region in mice. Qi F; Liu T; Zhang X; Gao X; Li Z; Chen L; Lin C; Wang L; Wang ZJ; Tang H; Chen Z Neuropharmacology; 2020 Jan; 162():107783. PubMed ID: 31541650 [TBL] [Abstract][Full Text] [Related]
8. A comparison of intrathecal magnesium and ketamine in attenuating remifentanil-induced hyperalgesia in rats. Sun J; Lin H; Feng X; Dong J; Ansong E; Xu X BMC Anesthesiol; 2016 Sep; 16(1):74. PubMed ID: 27599837 [TBL] [Abstract][Full Text] [Related]
9. GPR30 receptor promotes preoperative anxiety-induced postoperative hyperalgesia by up-regulating GABA Jiang M; Sun Y; Lei Y; Hu F; Xia Z; Liu Y; Ma Z; Gu X BMC Anesthesiol; 2020 Apr; 20(1):93. PubMed ID: 32321426 [TBL] [Abstract][Full Text] [Related]
10. Opioid-induced hyperalgesia in a murine model of postoperative pain: role of nitric oxide generated from the inducible nitric oxide synthase. Célérier E; González JR; Maldonado R; Cabañero D; Puig MM Anesthesiology; 2006 Mar; 104(3):546-55. PubMed ID: 16508403 [TBL] [Abstract][Full Text] [Related]
11. Heroin-based crack induces hyperalgesia through β-arrestin 2 redistribution and phosphorylation of Erk1/2 and JNK in the periaqueductal gray area. Aberoumandi SM; Vousooghi N; Tabrizi BA; Karimi P Neurosci Lett; 2019 Apr; 698():133-139. PubMed ID: 30641110 [TBL] [Abstract][Full Text] [Related]
12. Intrathecal injection of KN93 attenuates paradoxical remifentanil-induced postoperative hyperalgesia by inhibiting spinal CaMKII phosphorylation in rats. Jiang M; Zhang W; Cheng C; Ma Z; Gu X Pharmacol Biochem Behav; 2015 Jul; 134():35-41. PubMed ID: 25937575 [TBL] [Abstract][Full Text] [Related]
13. Spinal mitochondrial-derived ROS contributes to remifentanil-induced postoperative hyperalgesia via modulating NMDA receptor in rats. Ye L; Xiao L; Bai X; Yang SY; Li Y; Chen Y; Cui Y; Chen Y Neurosci Lett; 2016 Nov; 634():79-86. PubMed ID: 27637388 [TBL] [Abstract][Full Text] [Related]
14. N-acetyl-cysteine attenuates remifentanil-induced postoperative hyperalgesia via inhibiting matrix metalloproteinase-9 in dorsal root ganglia. Liu Y; Ni Y; Zhang W; Sun YE; Ma Z; Gu X Oncotarget; 2017 Mar; 8(10):16988-17001. PubMed ID: 28199982 [TBL] [Abstract][Full Text] [Related]
15. CaMKII Phosphorylation in Primary Somatosensory Cortical Neurons is Involved in the Inhibition of Remifentanil-induced Hyperalgesia by Lidocaine in Male Sprague-Dawley Rats. Cui W; Wang S; Han R; Wang Q; Li J J Neurosurg Anesthesiol; 2016 Jan; 28(1):44-50. PubMed ID: 25811361 [TBL] [Abstract][Full Text] [Related]
16. Inhibition of DOR prevents remifentanil induced postoperative hyperalgesia through regulating the trafficking and function of spinal NMDA receptors in vivo and in vitro. Wang C; Li Y; Wang H; Xie K; Shu R; Zhang L; Hu N; Yu Y; Wang G Brain Res Bull; 2015 Jan; 110():30-9. PubMed ID: 25498394 [TBL] [Abstract][Full Text] [Related]
17. Acid-sensing ion channel 3 expression is increased in dorsal root ganglion, hippocampus and hypothalamus in remifentanil-induced hyperalgesia in rats. Li T; Gao C; Shu S; Chai X; Xie Y Neurosci Lett; 2020 Mar; 721():134631. PubMed ID: 31734291 [TBL] [Abstract][Full Text] [Related]
18. Enhancement of spinal dorsal horn neuron NMDA receptor phosphorylation as the mechanism of remifentanil induced hyperalgesia: Roles of PKC and CaMKII. Li S; Zeng J; Wan X; Yao Y; Zhao N; Yu Y; Yu C; Xia Z Mol Pain; 2017; 13():1744806917723789. PubMed ID: 28714352 [TBL] [Abstract][Full Text] [Related]
19. Pronociceptive effects of remifentanil in a mouse model of postsurgical pain: effect of a second surgery. Cabañero D; Campillo A; Célérier E; Romero A; Puig MM Anesthesiology; 2009 Dec; 111(6):1334-45. PubMed ID: 19934880 [TBL] [Abstract][Full Text] [Related]
20. Neuron-restrictive silencer factor-mediated downregulation of μ-opioid receptor contributes to the reduced morphine analgesia in bone cancer pain. Zhu C; Tang J; Ding T; Chen L; Wang W; Mei XP; He XT; Wang W; Zhang LD; Dong YL; Luo ZJ Pain; 2017 May; 158(5):879-890. PubMed ID: 28415063 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]