These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
157 related articles for article (PubMed ID: 25269518)
1. Acute exercise stress reveals cerebrovascular benefits associated with moderate gains in cardiorespiratory fitness. Brugniaux JV; Marley CJ; Hodson DA; New KJ; Bailey DM J Cereb Blood Flow Metab; 2014 Dec; 34(12):1873-6. PubMed ID: 25269518 [TBL] [Abstract][Full Text] [Related]
2. Elevated aerobic fitness sustained throughout the adult lifespan is associated with improved cerebral hemodynamics. Bailey DM; Marley CJ; Brugniaux JV; Hodson D; New KJ; Ogoh S; Ainslie PN Stroke; 2013 Nov; 44(11):3235-8. PubMed ID: 23963329 [TBL] [Abstract][Full Text] [Related]
3. The effect of exercise intensity and cardiorespiratory fitness on the kinetic response of middle cerebral artery blood velocity during exercise in healthy adults. Weston ME; Barker AR; Tomlinson OW; Coombes JS; Bailey TG; Bond B J Appl Physiol (1985); 2022 Jul; 133(1):214-222. PubMed ID: 35708705 [TBL] [Abstract][Full Text] [Related]
5. Cerebral blood flow and cerebrovascular reactivity at rest and during sub-maximal exercise: effect of age and 12-week exercise training. Murrell CJ; Cotter JD; Thomas KN; Lucas SJ; Williams MJ; Ainslie PN Age (Dordr); 2013 Jun; 35(3):905-20. PubMed ID: 22669592 [TBL] [Abstract][Full Text] [Related]
6. Cardiorespiratory and cerebrovascular responses to head-up tilt I: influence of age and training status. Murrell CJ; Cotter JD; George K; Shave R; Wilson L; Thomas K; Williams MJ; Ainslie PN Exp Gerontol; 2011 Jan; 46(1):9-17. PubMed ID: 20600779 [TBL] [Abstract][Full Text] [Related]
7. Acute exercise-related cognitive effects are not attributable to changes in end-tidal CO Shoemaker LN; Wilson LC; Lucas SJE; Machado L; Cotter JD Eur J Appl Physiol; 2020 Jul; 120(7):1637-1649. PubMed ID: 32476054 [TBL] [Abstract][Full Text] [Related]
8. Dynamics of middle cerebral artery blood flow velocity during moderate-intensity exercise. Billinger SA; Craig JC; Kwapiszeski SJ; Sisante JV; Vidoni ED; Maletsky R; Poole DC J Appl Physiol (1985); 2017 May; 122(5):1125-1133. PubMed ID: 28280106 [TBL] [Abstract][Full Text] [Related]
9. Effect of age on exercise-induced alterations in cognitive executive function: relationship to cerebral perfusion. Lucas SJ; Ainslie PN; Murrell CJ; Thomas KN; Franz EA; Cotter JD Exp Gerontol; 2012 Aug; 47(8):541-51. PubMed ID: 22230488 [TBL] [Abstract][Full Text] [Related]
11. Effects of cardiorespiratory fitness and exercise training on cerebrovascular blood flow and reactivity: a systematic review with meta-analyses. Smith EC; Pizzey FK; Askew CD; Mielke GI; Ainslie PN; Coombes JS; Bailey TG Am J Physiol Heart Circ Physiol; 2021 Jul; 321(1):H59-H76. PubMed ID: 34018848 [TBL] [Abstract][Full Text] [Related]
12. Elevation in cerebral blood flow velocity with aerobic fitness throughout healthy human ageing. Ainslie PN; Cotter JD; George KP; Lucas S; Murrell C; Shave R; Thomas KN; Williams MJ; Atkinson G J Physiol; 2008 Aug; 586(16):4005-10. PubMed ID: 18635643 [TBL] [Abstract][Full Text] [Related]
13. Cardiorespiratory and cerebrovascular responses to head-up tilt II: influence of age, training status and acute exercise. Murrell CJ; Cotter JD; George K; Shave R; Wilson L; Thomas K; Williams MJ; Ainslie PN Exp Gerontol; 2011 Jan; 46(1):1-8. PubMed ID: 20600780 [TBL] [Abstract][Full Text] [Related]
14. Neurovascular coupling and distribution of cerebral blood flow during exercise. Willie CK; Cowan EC; Ainslie PN; Taylor CE; Smith KJ; Sin PY; Tzeng YC J Neurosci Methods; 2011 Jun; 198(2):270-3. PubMed ID: 21459113 [TBL] [Abstract][Full Text] [Related]
15. Association between aerobic fitness and cerebrovascular function with neurocognitive functions in healthy, young adults. Hwang J; Kim K; Brothers RM; Castelli DM; Gonzalez-Lima F Exp Brain Res; 2018 May; 236(5):1421-1430. PubMed ID: 29536150 [TBL] [Abstract][Full Text] [Related]
16. Alterations in cerebral autoregulation and cerebral blood flow velocity during acute hypoxia: rest and exercise. Ainslie PN; Barach A; Murrell C; Hamlin M; Hellemans J; Ogoh S Am J Physiol Heart Circ Physiol; 2007 Feb; 292(2):H976-83. PubMed ID: 17012355 [TBL] [Abstract][Full Text] [Related]
17. Pilot Study to Characterize Middle Cerebral Artery Dynamic Response to an Acute Bout of Moderate Intensity Exercise at 3- and 6-Months Poststroke. Billinger SA; Whitaker AA; Morton A; Kaufman CS; Perdomo SJ; Ward JL; Eickmeyer SM; Bai SX; Ledbetter L; Abraham MG J Am Heart Assoc; 2021 Feb; 10(3):e017821. PubMed ID: 33496192 [TBL] [Abstract][Full Text] [Related]
18. The Effect of Stroke on Middle Cerebral Artery Blood Flow Velocity Dynamics During Exercise. Kempf KS; Whitaker AA; Lui Y; Witte E; Perdomo SJ; Ward JL; Eickmeyer S; Ledbetter L; Abraham M; Billinger SA J Neurol Phys Ther; 2019 Oct; 43(4):212-219. PubMed ID: 31449179 [TBL] [Abstract][Full Text] [Related]
19. Cerebral hypoperfusion during hypoxic exercise following two different hypoxic exposures: independence from changes in dynamic autoregulation and reactivity. Ainslie PN; Hamlin M; Hellemans J; Rasmussen P; Ogoh S Am J Physiol Regul Integr Comp Physiol; 2008 Nov; 295(5):R1613-22. PubMed ID: 18768767 [TBL] [Abstract][Full Text] [Related]
20. Agreement between left and right middle cerebral artery blood velocity responses to incremental and constant work-rate exercise in healthy males and females. Weston ME; Barker AR; Tomlinson OW; Coombes JS; Bailey TG; Bond B Physiol Meas; 2023 Jul; 44(7):. PubMed ID: 37406643 [No Abstract] [Full Text] [Related] [Next] [New Search]