These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
160 related articles for article (PubMed ID: 25269547)
1. Recombinant expression of glpK and glpD genes improves the accumulation of shikimic acid in E. coli grown on glycerol. Yang Y; Yuan C; Dou J; Han X; Wang H; Fang H; Zhou C World J Microbiol Biotechnol; 2014 Dec; 30(12):3263-72. PubMed ID: 25269547 [TBL] [Abstract][Full Text] [Related]
2. Deletion of the aroK gene is essential for high shikimic acid accumulation through the shikimate pathway in E. coli. Chen K; Dou J; Tang S; Yang Y; Wang H; Fang H; Zhou C Bioresour Technol; 2012 Sep; 119():141-7. PubMed ID: 22728194 [TBL] [Abstract][Full Text] [Related]
3. Metabolic engineering of Escherichia coli to enhance shikimic acid production from sorbitol. Liu X; Lin J; Hu H; Zhou B; Zhu B World J Microbiol Biotechnol; 2014 Sep; 30(9):2543-50. PubMed ID: 24894540 [TBL] [Abstract][Full Text] [Related]
4. Improvement of L-phenylalanine production from glycerol by recombinant Escherichia coli strains: the role of extra copies of glpK, glpX, and tktA genes. Gottlieb K; Albermann C; Sprenger GA Microb Cell Fact; 2014 Jul; 13(1):96. PubMed ID: 25012491 [TBL] [Abstract][Full Text] [Related]
5. Production of shikimic acid from Escherichia coli through chemically inducible chromosomal evolution and cofactor metabolic engineering. Cui YY; Ling C; Zhang YY; Huang J; Liu JZ Microb Cell Fact; 2014 Feb; 13():21. PubMed ID: 24512078 [TBL] [Abstract][Full Text] [Related]
6. Improvement of shikimic acid production in Escherichia coli with growth phase-dependent regulation in the biosynthetic pathway from glycerol. Lee MY; Hung WP; Tsai SH World J Microbiol Biotechnol; 2017 Feb; 33(2):25. PubMed ID: 28044275 [TBL] [Abstract][Full Text] [Related]
7. Site-specific integration and constitutive expression of key genes into Escherichia coli chromosome increases shikimic acid yields. Liu X; Lin J; Hu H; Zhou B; Zhu B Enzyme Microb Technol; 2016 Jan; 82():96-104. PubMed ID: 26672454 [TBL] [Abstract][Full Text] [Related]
8. Metabolic engineering for the production of shikimic acid in an evolved Escherichia coli strain lacking the phosphoenolpyruvate: carbohydrate phosphotransferase system. Escalante A; Calderón R; Valdivia A; de Anda R; Hernández G; Ramírez OT; Gosset G; Bolívar F Microb Cell Fact; 2010 Apr; 9():21. PubMed ID: 20385022 [TBL] [Abstract][Full Text] [Related]
9. Glycerol catabolism in Bacillus subtilis: nucleotide sequence of the genes encoding glycerol kinase (glpK) and glycerol-3-phosphate dehydrogenase (glpD). Holmberg C; Beijer L; Rutberg B; Rutberg L J Gen Microbiol; 1990 Dec; 136(12):2367-75. PubMed ID: 2127799 [TBL] [Abstract][Full Text] [Related]
10. Enhanced production of shikimic acid using a multi-gene co-expression system in Escherichia coli. Liu XL; Lin J; Hu HF; Zhou B; Zhu BQ Chin J Nat Med; 2016 Apr; 14(4):286-293. PubMed ID: 27114316 [TBL] [Abstract][Full Text] [Related]
11. Efficient synthesis of L-lactic acid from glycerol by metabolically engineered Escherichia coli. Mazumdar S; Blankschien MD; Clomburg JM; Gonzalez R Microb Cell Fact; 2013 Jan; 12():7. PubMed ID: 23347598 [TBL] [Abstract][Full Text] [Related]
12. Characterization of an Escherichia coli mutant which utilizes glycerol in the absence of cyclic adenosine monophosphate. Fraser AD; Yamazaki H Can J Microbiol; 1980 Mar; 26(3):393-6. PubMed ID: 6250693 [TBL] [Abstract][Full Text] [Related]
13. [Improving β-carotene production in Escherichia coli by metabolic engineering of glycerol utilization pathway]. Dong Y; Hu K; Li X; Li Q; Zhang X Sheng Wu Gong Cheng Xue Bao; 2017 Feb; 33(2):247-260. PubMed ID: 28956381 [TBL] [Abstract][Full Text] [Related]
14. [Rational design and construction of an overproducing shikimic acid Escherichia coli by metabolic engineering]. Li M; Chen X; Zhou L; Shen W; Fan Y; Wang Z Sheng Wu Gong Cheng Xue Bao; 2013 Jan; 29(1):56-67. PubMed ID: 23631118 [TBL] [Abstract][Full Text] [Related]
15. Improving 1,3-propanediol production from glycerol in a metabolically engineered Escherichia coli by reducing accumulation of sn-glycerol-3-phosphate. Zhu MM; Lawman PD; Cameron DC Biotechnol Prog; 2002; 18(4):694-9. PubMed ID: 12153300 [TBL] [Abstract][Full Text] [Related]
16. Constitutive expression of selected genes from the pentose phosphate and aromatic pathways increases the shikimic acid yield in high-glucose batch cultures of an Escherichia coli strain lacking PTS and pykF. Rodriguez A; Martínez JA; Báez-Viveros JL; Flores N; Hernández-Chávez G; Ramírez OT; Gosset G; Bolivar F Microb Cell Fact; 2013 Sep; 12():86. PubMed ID: 24079972 [TBL] [Abstract][Full Text] [Related]
17. Designing next generation recombinant protein expression platforms by modulating the cellular stress response in Escherichia coli. Guleria R; Jain P; Verma M; Mukherjee KJ Microb Cell Fact; 2020 Dec; 19(1):227. PubMed ID: 33308214 [TBL] [Abstract][Full Text] [Related]
18. Glycerol metabolism of Lactobacillus rhamnosus ATCC 7469: cloning and expression of two glycerol kinase genes. Alvarez Mde F; Medina R; Pasteris SE; Strasser de Saad AM; Sesma F J Mol Microbiol Biotechnol; 2004; 7(4):170-81. PubMed ID: 15383715 [TBL] [Abstract][Full Text] [Related]
19. Metabolic engineering of Escherichia coli BL21 (DE3) for de novo production of L-DOPA from D-glucose. Fordjour E; Adipah FK; Zhou S; Du G; Zhou J Microb Cell Fact; 2019 Apr; 18(1):74. PubMed ID: 31023316 [TBL] [Abstract][Full Text] [Related]
20. Artificial cell factory design for shikimate production in Escherichia coli. Lee HN; Seo SY; Kim HJ; Park JH; Park E; Choi SS; Lee SJ; Kim ES J Ind Microbiol Biotechnol; 2021 Dec; 48(9-10):. PubMed ID: 34227672 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]