These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 25269754)

  • 1. Electro-oculography-based detection of sleep-wake in sleep apnea patients.
    Virkkala J; Toppila J; Maasilta P; Bachour A
    Sleep Breath; 2015 Sep; 19(3):785-9. PubMed ID: 25269754
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Automatic sleep stage classification using two-channel electro-oculography.
    Virkkala J; Hasan J; Värri A; Himanen SL; Müller K
    J Neurosci Methods; 2007 Oct; 166(1):109-15. PubMed ID: 17681382
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automatic identification of sleep and wakefulness using single-channel EEG and respiratory polygraphy signals for the diagnosis of obstructive sleep apnea.
    Sabil A; Vanbuis J; Baffet G; Feuilloy M; Le Vaillant M; Meslier N; Gagnadoux F
    J Sleep Res; 2019 Apr; 28(2):e12795. PubMed ID: 30478923
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The use of two-channel electro-oculography in automatic detection of unintentional sleep onset.
    Virkkala J; Hasan J; Värri A; Himanen SL; Härmä M
    J Neurosci Methods; 2007 Jun; 163(1):137-44. PubMed ID: 17376536
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The validity of wrist actimetry assessment of sleep with and without sleep apnea.
    Wang D; Wong KK; Dungan GC; Buchanan PR; Yee BJ; Grunstein RR
    J Clin Sleep Med; 2008 Oct; 4(5):450-5. PubMed ID: 18853703
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automatic detection of slow wave sleep using two channel electro-oculography.
    Virkkala J; Hasan J; Värri A; Himanen SL; Müller K
    J Neurosci Methods; 2007 Feb; 160(1):171-7. PubMed ID: 16965823
    [TBL] [Abstract][Full Text] [Related]  

  • 7. EOG-based auto-staging: less is more.
    Berthomier C; Brandewinder M
    Sleep Breath; 2015 Sep; 19(3):791-3. PubMed ID: 25655632
    [No Abstract]   [Full Text] [Related]  

  • 8. Sleep/wake measurement using a non-contact biomotion sensor.
    De Chazal P; Fox N; O'Hare E; Heneghan C; Zaffaroni A; Boyle P; Smith S; O'Connell C; McNicholas WT
    J Sleep Res; 2011 Jun; 20(2):356-66. PubMed ID: 20704645
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessment of a portable monitoring device WatchPAT 200 in the diagnosis of obstructive sleep apnea.
    Weimin L; Rongguang W; Dongyan H; Xiaoli L; Wei J; Shiming Y
    Eur Arch Otorhinolaryngol; 2013 Nov; 270(12):3099-105. PubMed ID: 23708441
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Continuous positive airway pressure device-based automated detection of obstructive sleep apnea compared to standard laboratory polysomnography.
    Prasad B; Carley DW; Herdegen JJ
    Sleep Breath; 2010 Jun; 14(2):101-7. PubMed ID: 19826848
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accuracy of a novel auto-CPAP device to evaluate the residual apnea-hypopnea index in patients with obstructive sleep apnea.
    Nigro CA; González S; Arce A; Aragone MR; Nigro L
    Sleep Breath; 2015 May; 19(2):569-78. PubMed ID: 25115886
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The use of epochs to stage sleep results in incorrect computer-generated AHI values.
    Norman MB; Middleton S; Sullivan CE
    Sleep Breath; 2011 Sep; 15(3):385-92. PubMed ID: 20386991
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An E-health solution for automatic sleep classification according to Rechtschaffen and Kales: validation study of the Somnolyzer 24 x 7 utilizing the Siesta database.
    Anderer P; Gruber G; Parapatics S; Woertz M; Miazhynskaia T; Klosch G; Saletu B; Zeitlhofer J; Barbanoj MJ; Danker-Hopfe H; Himanen SL; Kemp B; Penzel T; Grozinger M; Kunz D; Rappelsberger P; Schlogl A; Dorffner G
    Neuropsychobiology; 2005; 51(3):115-33. PubMed ID: 15838184
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sleep disordered breathing analysis in a general population using standard pulse oximeter signals.
    Barak-Shinar D; Amos Y; Bogan RK
    Sleep Breath; 2013 Sep; 17(3):1109-15. PubMed ID: 23386370
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Automatic sleep stage classification using two facial electrodes.
    Virkkala J; Velin R; Himanen SL; Värri A; Müller K; Hasan J
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():1643-6. PubMed ID: 19162992
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Assessment of a portable monitoring device Watch PAT 200 in the diagnosis of obstructive sleep apnea hypopnea syndrome].
    Li W; Wang R; Huang D; Liu X; Jin W; Yang S
    Lin Chuang Er Bi Yan Hou Tou Jing Wai Ke Za Zhi; 2013 Dec; 27(24):1343-7. PubMed ID: 24669681
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Energy expenditure in obstructive sleep apnea: validation of a multiple physiological sensor for determination of sleep and wake.
    O'Driscoll DM; Turton AR; Copland JM; Strauss BJ; Hamilton GS
    Sleep Breath; 2013 Mar; 17(1):139-46. PubMed ID: 22318784
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sleep-wake evaluation from whole-night non-contact audio recordings of breathing sounds.
    Dafna E; Tarasiuk A; Zigel Y
    PLoS One; 2015; 10(2):e0117382. PubMed ID: 25710495
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Accuracy of residual apnea-hypopnea index obtained using the continuous positive airway pressure device: application of new version 2.0 scoring rules for respiratory events during sleep.
    Kim DE; Hwangbo Y; Bae JH; Yang KI
    Sleep Breath; 2015 Dec; 19(4):1335-41. PubMed ID: 26407962
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A portable automated assessment tool for sleep apnea using a combined Holter-oximeter.
    Heneghan C; Chua CP; Garvey JF; de Chazal P; Shouldice R; Boyle P; McNicholas WT
    Sleep; 2008 Oct; 31(10):1432-9. PubMed ID: 18853941
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.