BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 25269818)

  • 1. Simultaneous recovery of vanadium and nickel from power plant fly-ash: optimization of parameters using response surface methodology.
    Nazari E; Rashchi F; Saba M; Mirazimi SM
    Waste Manag; 2014 Dec; 34(12):2687-96. PubMed ID: 25269818
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Leaching of valuable elements from thermal power plant bottom ash using a thermo-hydrometallurgical process.
    Bojinova D; Teodosieva R
    Waste Manag Res; 2016 Jun; 34(6):511-7. PubMed ID: 26951342
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Process development for recovery of vanadium and nickel from an industrial solid waste by a leaching-solvent extraction technique.
    Barik SP; Park KH; Nam CW
    J Environ Manage; 2014 Dec; 146():22-28. PubMed ID: 25156262
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fungal leaching of valuable metals from a power plant residual ash using Penicillium simplicissimum: Evaluation of thermal pretreatment and different bioleaching methods.
    Rasoulnia P; Mousavi SM; Rastegar SO; Azargoshasb H
    Waste Manag; 2016 Jun; 52():309-17. PubMed ID: 27095291
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vanadium recovery from oil fly ash by leaching, precipitation and solvent extraction processes.
    Navarro R; Guzman J; Saucedo I; Revilla J; Guibal E
    Waste Manag; 2007; 27(3):425-38. PubMed ID: 16563726
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermal and hydrometallurgical recovery methods of heavy metals from municipal solid waste fly ash.
    Kuboňová L; Langová Š; Nowak B; Winter F
    Waste Manag; 2013 Nov; 33(11):2322-7. PubMed ID: 23809619
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Valorization of fly ash by nickel ferrite and vanadium oxide recovery through pyro-hydrometallurgical processes: Technical and environmental assessment.
    Hamidi A; Shakibania S; Mahmoudi A; Rashchi F; Vahidi E
    J Environ Manage; 2023 Oct; 344():118442. PubMed ID: 37348302
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sulfuric acid baking and leaching of spent Co-Mo/Al2O3 catalyst.
    Kim HI; Park KH; Mishra D
    J Hazard Mater; 2009 Jul; 166(2-3):1540-4. PubMed ID: 19121897
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nickel recovery from spent Raneynickel catalyst through dilute sulfuric acid leaching and soda ash precipitation.
    Lee JY; Rao SV; Kumar BN; Kang DJ; Reddy BR
    J Hazard Mater; 2010 Apr; 176(1-3):1122-5. PubMed ID: 20018448
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Irradiation effect on leaching behavior and form of heavy metals in fly ash of municipal solid waste incinerator.
    Nam S; Namkoong W
    J Hazard Mater; 2012 Jan; 199-200():440-7. PubMed ID: 22152920
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recovery of vanadium from spent catalysts of sulfuric acid plant by using inorganic and organic acids: Laboratory and semi-pilot tests.
    Erust C; Akcil A; Bedelova Z; Anarbekov K; Baikonurova A; Tuncuk A
    Waste Manag; 2016 Mar; 49():455-461. PubMed ID: 26711187
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recovery of metals from a mixture of various spent batteries by a hydrometallurgical process.
    Tanong K; Coudert L; Mercier G; Blais JF
    J Environ Manage; 2016 Oct; 181():95-107. PubMed ID: 27318877
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recovery of lithium and cobalt from waste lithium ion batteries of mobile phone.
    Jha MK; Kumari A; Jha AK; Kumar V; Hait J; Pandey BD
    Waste Manag; 2013 Sep; 33(9):1890-7. PubMed ID: 23773705
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hazardous waste to materials: recovery of molybdenum and vanadium from acidic leach liquor of spent hydroprocessing catalyst using alamine 308.
    Sahu KK; Agrawal A; Mishra D
    J Environ Manage; 2013 Aug; 125():68-73. PubMed ID: 23644591
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Maximization of organic acids production by Aspergillus niger in a bubble column bioreactor for V and Ni recovery enhancement from power plant residual ash in spent-medium bioleaching experiments.
    Rasoulnia P; Mousavi SM
    Bioresour Technol; 2016 Sep; 216():729-36. PubMed ID: 27295250
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recovery of vanadium and nickel from heavy oil fly ash (HOFA): a critical review.
    Bakkar A; El-Sayed Seleman MM; Zaky Ahmed MM; Harb S; Goren S; Howsawi E
    RSC Adv; 2023 Feb; 13(10):6327-6345. PubMed ID: 36824230
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stabilization of heavy metals on spent fluid catalytic cracking catalyst using marine clay.
    Sun DD; Tay JH; Qian CE; Lai D
    Water Sci Technol; 2001; 44(10):285-91. PubMed ID: 11794668
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of metal Bioleaching from thermal power plant fly ash by Aspergillus niger 34770 culture supernatant and reduction of phytotoxicity during the process.
    Jadhav UU; Hocheng H
    Appl Biochem Biotechnol; 2015 Jan; 175(2):870-81. PubMed ID: 25349087
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of flue gas SO2 on the toxicity of heavy metals in municipal solid waste incinerator fly ash after accelerated carbonation stabilization.
    Sicong T; Jianguo J; Chang Z
    J Hazard Mater; 2011 Sep; 192(3):1609-15. PubMed ID: 21782326
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of CaO's effect on the fate of heavy metals during thermal treatment of two typical types of MSWI fly ashes in China.
    Hu HY; Liu H; Shen WQ; Luo GQ; Li AJ; Lu ZL; Yao H
    Chemosphere; 2013 Oct; 93(4):590-6. PubMed ID: 23800595
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.