BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 25269818)

  • 21. Recovery of rare earth elements from coal fly ash by integrated physical separation and acid leaching.
    Pan J; Nie T; Vaziri Hassas B; Rezaee M; Wen Z; Zhou C
    Chemosphere; 2020 Jun; 248():126112. PubMed ID: 32069698
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Nickel-cadmium batteries: effect of electrode phase composition on acid leaching process.
    Nogueira CA; Margarido F
    Environ Technol; 2012; 33(1-3):359-66. PubMed ID: 22519122
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Recycling of hazardous waste as a new resource for nickel extraction.
    Gharabaghi M; Ejtemaei M; Irannajad M; Azadmehr AR
    Environ Technol; 2012; 33(13-15):1569-76. PubMed ID: 22988617
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Processing of Egyptian boiler-ash for extraction of vanadium and nickel.
    Amer AM
    Waste Manag; 2002; 22(5):515-20. PubMed ID: 12092761
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Studies on sorption properties of zeolite derived from Indian fly ash.
    Mishra T; Tiwari SK
    J Hazard Mater; 2006 Sep; 137(1):299-303. PubMed ID: 16563613
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Prospects for cleaning ash in the acidic effluent from bioleaching of sulfidic concentrates.
    Paul M; Sandström A; Paul J
    J Hazard Mater; 2004 Jan; 106(1):25-35. PubMed ID: 14693436
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Recovery of nickel from spent NiO/Al2O3 catalyst through sulfuric acid leaching, precipitation and solvent extraction.
    Nazemi MK; Rashchi F
    Waste Manag Res; 2012 May; 30(5):492-7. PubMed ID: 21930525
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ultrasound-assisted leaching of vanadium from fly ash using lemon juice organic acids.
    Rahimi G; Rastegar SO; Rahmani Chianeh F; Gu T
    RSC Adv; 2020 Jan; 10(3):1685-1696. PubMed ID: 35494706
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Hydrometallurgical recovery of metal values from sulfuric acid leaching liquor of spent lithium-ion batteries.
    Chen X; Chen Y; Zhou T; Liu D; Hu H; Fan S
    Waste Manag; 2015 Apr; 38():349-56. PubMed ID: 25619126
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Leaching of heavy metals from chromated copper arsenate (CCA) treated wood after disposal.
    Moghaddam AH; Mulligan CN
    Waste Manag; 2008; 28(3):628-37. PubMed ID: 17499985
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of ash circulation in gasification melting system on concentration and leachability of lead in melting furnace fly ash.
    Okada T; Suzuki M
    J Environ Manage; 2013 Nov; 130():347-53. PubMed ID: 24121545
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Influence of pH, curing time and environmental stress on the immobilization of hazardous waste using activated fly ash.
    Srivastava S; Chaudhary R; Khale D
    J Hazard Mater; 2008 May; 153(3):1103-9. PubMed ID: 17988796
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A new process for nickel ammonium disulfate production from ash of the hyperaccumulating plant Alyssum murale.
    Barbaroux R; Plasari E; Mercier G; Simonnot MO; Morel JL; Blais JF
    Sci Total Environ; 2012 Apr; 423():111-9. PubMed ID: 22405560
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Impact assessment of fly ash on ground water quality: An experimental study using batch leaching tests.
    Dandautiya R; Singh AP; Kundu S
    Waste Manag Res; 2018 Jul; 36(7):624-634. PubMed ID: 29848219
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Metal leaching from refinery waste hydroprocessing catalyst.
    Marafi M; Rana MS
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2018; 53(11):951-959. PubMed ID: 29775124
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Removal of sulfuric acid mist from lead-acid battery plants by coal fly ash-based sorbents.
    Shu Y; Wei X; Fang Y; Lan B; Chen H
    J Hazard Mater; 2015 Apr; 286():517-24. PubMed ID: 25603301
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Comparative study of ageing, heat treatment and accelerated carbonation for stabilization of municipal solid waste incineration bottom ash in view of reducing regulated heavy metal/metalloid leaching.
    Santos RM; Mertens G; Salman M; Cizer Ö; Van Gerven T
    J Environ Manage; 2013 Oct; 128():807-21. PubMed ID: 23867838
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Study of Forms of Compounds of Vanadium and Other Elements in Samples of Pyrometallurgical Enrichment of Ash from Burning Oil Combustion at Thermal Power Plants.
    Volkov A; Kologrieva U; Stulov P
    Materials (Basel); 2022 Dec; 15(23):. PubMed ID: 36500092
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Characterisation of major component leaching and buffering capacity of RDF incineration and gasification bottom ash in relation to reuse or disposal scenarios.
    Rocca S; van Zomeren A; Costa G; Dijkstra JJ; Comans RN; Lombardi F
    Waste Manag; 2012 Apr; 32(4):759-68. PubMed ID: 22226920
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Recovery of metals from Cuban nickel tailings by leaching with organic acids followed by precipitation and magnetic separation.
    Hernández CM; Banza AN; Gock E
    J Hazard Mater; 2007 Jan; 139(1):25-30. PubMed ID: 17084523
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.