These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 25269818)

  • 41. An extraction process to recover vanadium from low-grade vanadium-bearing titanomagnetite.
    Chen D; Zhao H; Hu G; Qi T; Yu H; Zhang G; Wang L; Wang W
    J Hazard Mater; 2015 Aug; 294():35-40. PubMed ID: 25840036
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Leaching characteristics of rare metal elements and chlorine in fly ash from ash melting plants for metal recovery.
    Jung CH; Osako M
    Waste Manag; 2009 May; 29(5):1532-40. PubMed ID: 18926690
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Recovery of nickel, cobalt and some salts from spent Ni-MH batteries.
    Rabah MA; Farghaly FE; Abd-El Motaleb MA
    Waste Manag; 2008; 28(7):1159-67. PubMed ID: 17714929
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Leaching efficiency of copper from industrial sludge with traditional acid extraction (TAE) and microwave assisted treatment (MAT).
    Kuo CY; Wu CH; Lo SL
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2005; 40(12):2203-14. PubMed ID: 16319018
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Aluminum and iron leaching from power plant coal fly ash for preparation of polymeric aluminum ferric chloride.
    Zhang Y; Li M; Liu D; Hou X; Zou J; Ma X; Shang F; Wang Z
    Environ Technol; 2019 May; 40(12):1568-1575. PubMed ID: 29319418
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Recovery of gallium and vanadium from gasification fly ash.
    Font O; Querol X; Juan R; Casado R; Ruiz CR; López-Soler A; Coca P; García Peña F
    J Hazard Mater; 2007 Jan; 139(3):413-23. PubMed ID: 16600480
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Comparative evaluation of microbial and chemical leaching processes for heavy metal removal from dewatered metal plating sludge.
    Bayat B; Sari B
    J Hazard Mater; 2010 Feb; 174(1-3):763-9. PubMed ID: 19880247
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Heavy metals leaching in Indian fly ash.
    Prasad B; Mondal KK
    J Environ Sci Eng; 2008 Apr; 50(2):127-32. PubMed ID: 19295096
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Potential Risk by Disposal of Bottom Ash from Thermal Power Plants and Minimization by Addition of NaHCO
    Singh G; Kumar S; Mohapatra SK
    Bull Environ Contam Toxicol; 2018 Dec; 101(6):773-778. PubMed ID: 30386893
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Removal of arsenic in coal fly ash by acid washing process using dilute H2SO4 solvent.
    Kashiwakura S; Ohno H; Matsubae-Yokoyama K; Kumagai Y; Kubo H; Nagasaka T
    J Hazard Mater; 2010 Sep; 181(1-3):419-25. PubMed ID: 20570439
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Monitoring the species of arsenic, chromium and nickel in milled coal, bottom ash and fly ash from a pulverized coal-fired power plant in western Canada.
    Goodarzi F; Huggins FE
    J Environ Monit; 2001 Feb; 3(1):1-6. PubMed ID: 11253001
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Leaching behaviour of a galvanic sludge in sulphuric acid and ammoniacal media.
    Silva JE; Soares D; Paiva AP; Labrincha JA; Castro F
    J Hazard Mater; 2005 May; 121(1-3):195-202. PubMed ID: 15885422
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Oral bioaccessibility of inorganic contaminants in waste dusts generated by laterite Ni ore smelting.
    Ettler V; Polák L; Mihaljevič M; Ratié G; Garnier J; Quantin C
    Environ Geochem Health; 2018 Oct; 40(5):1699-1712. PubMed ID: 27629409
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Leaching behavior of heavy metals from municipal solid wastes incineration (MSWI) fly ash used in concrete.
    Shi HS; Kan LL
    J Hazard Mater; 2009 May; 164(2-3):750-4. PubMed ID: 18838222
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Recycling of spent nickel-cadmium batteries based on bioleaching process.
    Zhu N; Zhang L; Li C; Cai C
    Waste Manag; 2003; 23(8):703-8. PubMed ID: 14522188
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Dissolution and characterization of HEV NiMH batteries.
    Larsson K; Ekberg C; Ødegaard-Jensen A
    Waste Manag; 2013 Mar; 33(3):689-98. PubMed ID: 22796014
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Kinetics of Mo, Ni, V and Al leaching from a spent hydrodesulphurization catalyst in a solution containing oxalic acid and hydrogen peroxide.
    Szymczycha-Madeja A
    J Hazard Mater; 2011 Feb; 186(2-3):2157-61. PubMed ID: 21167639
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Recovery of manganese and zinc from spent Zn-C cell powder: Experimental design of leaching by sulfuric acid solution containing glucose.
    Biswas RK; Karmakar AK; Kumar SL
    Waste Manag; 2016 May; 51():174-181. PubMed ID: 26564257
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Use of fly ash for remediation of metals polluted sediment--green remediation.
    Tomasevic DD; Dalmacija MB; Prica MDj; Dalmacija BD; Kerkez DV; Bečelić-Tomin MR; Roncevic SD
    Chemosphere; 2013 Sep; 92(11):1490-7. PubMed ID: 23642638
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Belgian MSWI fly ashes and APC residues: a characterisation study.
    De Boom A; Degrez M
    Waste Manag; 2012 Jun; 32(6):1163-70. PubMed ID: 22244614
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.