These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
169 related articles for article (PubMed ID: 25270217)
1. Comparison of automated and manual purification of total RNA for mRNA-based identification of body fluids. Akutsu T; Kitayama T; Watanabe K; Sakurada K Forensic Sci Int Genet; 2015 Jan; 14():11-7. PubMed ID: 25270217 [TBL] [Abstract][Full Text] [Related]
2. Facile semi-automated forensic body fluid identification by multiplex solution hybridization of NanoString® barcode probes to specific mRNA targets. Danaher P; White RL; Hanson EK; Ballantyne J Forensic Sci Int Genet; 2015 Jan; 14():18-30. PubMed ID: 25277098 [TBL] [Abstract][Full Text] [Related]
3. A model for data analysis of microRNA expression in forensic body fluid identification. Wang Z; Luo H; Pan X; Liao M; Hou Y Forensic Sci Int Genet; 2012 May; 6(3):419-23. PubMed ID: 21903498 [TBL] [Abstract][Full Text] [Related]
4. Capillary electrophoresis of a multiplex reverse transcription-polymerase chain reaction to target messenger RNA markers for body fluid identification. Haas C; Hanson E; Ballantyne J Methods Mol Biol; 2012; 830():169-83. PubMed ID: 22139660 [TBL] [Abstract][Full Text] [Related]
5. A multiplex (m)RNA-profiling system for the forensic identification of body fluids and contact traces. Lindenbergh A; de Pagter M; Ramdayal G; Visser M; Zubakov D; Kayser M; Sijen T Forensic Sci Int Genet; 2012 Sep; 6(5):565-77. PubMed ID: 22361234 [TBL] [Abstract][Full Text] [Related]
6. Genome-wide mRNA profiling and multiplex quantitative RT-PCR for forensic body fluid identification. Park SM; Park SY; Kim JH; Kang TW; Park JL; Woo KM; Kim JS; Lee HC; Kim SY; Lee SH Forensic Sci Int Genet; 2013 Jan; 7(1):143-50. PubMed ID: 23026559 [TBL] [Abstract][Full Text] [Related]
7. Messenger RNA profiling for forensic body fluid identification: research and applications. Wang Z; Zhang SH; Di Z; Zhao SM; Li CT Fa Yi Xue Za Zhi; 2013 Oct; 29(5):368-74. PubMed ID: 24466779 [TBL] [Abstract][Full Text] [Related]
8. Gene expression analysis of normal and colorectal cancer tissue samples from fresh frozen and matched formalin-fixed, paraffin-embedded (FFPE) specimens after manual and automated RNA isolation. Kalmar A; Wichmann B; Galamb O; Spisák S; Tóth K; Leiszter K; Tulassay Z; Molnár B Methods; 2013 Jan; 59(1):S16-9. PubMed ID: 23036325 [TBL] [Abstract][Full Text] [Related]
9. Comparative evaluation of different extraction and quantification methods for forensic RNA analysis. Grabmüller M; Madea B; Courts C Forensic Sci Int Genet; 2015 May; 16():195-202. PubMed ID: 25625965 [TBL] [Abstract][Full Text] [Related]
10. Circulating microRNA for the identification of forensically relevant body fluids. Hanson EK; Ballantyne J Methods Mol Biol; 2013; 1024():221-34. PubMed ID: 23719955 [TBL] [Abstract][Full Text] [Related]
11. RNA extraction from archival formalin-fixed paraffin-embedded tissue: a comparison of manual, semiautomated, and fully automated purification methods. Bohmann K; Hennig G; Rogel U; Poremba C; Mueller BM; Fritz P; Stoerkel S; Schaefer KL Clin Chem; 2009 Sep; 55(9):1719-27. PubMed ID: 19617290 [TBL] [Abstract][Full Text] [Related]
12. [Use of the real-time RT-PCR method for investigation of small stable RNA expression level in human epidermoid carcinoma cells A431]. Nikitina TV; Nazarova NIu; Tishchenko LI; Tuohimaa P; Sedova VM Tsitologiia; 2003; 45(4):392-402. PubMed ID: 14520871 [TBL] [Abstract][Full Text] [Related]
13. Improvement and automation of a real-time PCR assay for vaginal fluids. De Vittori E; Giampaoli S; Barni F; Baldi M; Berti A; Ripani L; Romano Spica V Forensic Sci Int; 2016 May; 262():179-82. PubMed ID: 27022861 [TBL] [Abstract][Full Text] [Related]
14. Degraded RNA transcript stable regions (StaRs) as targets for enhanced forensic RNA body fluid identification. Lin MH; Albani PP; Fleming R Forensic Sci Int Genet; 2016 Jan; 20():61-70. PubMed ID: 26485676 [TBL] [Abstract][Full Text] [Related]
15. A comparison of commercially-available automated and manual extraction kits for the isolation of total RNA from small tissue samples. Sellin Jeffries MK; Kiss AJ; Smith AW; Oris JT BMC Biotechnol; 2014 Nov; 14():94. PubMed ID: 25394494 [TBL] [Abstract][Full Text] [Related]
16. Comparison of relative mRNA quantification models and the impact of RNA integrity in quantitative real-time RT-PCR. Fleige S; Walf V; Huch S; Prgomet C; Sehm J; Pfaffl MW Biotechnol Lett; 2006 Oct; 28(19):1601-13. PubMed ID: 16900335 [TBL] [Abstract][Full Text] [Related]
17. Evaluation of a co-extraction method for real-time PCR-based body fluid identification and DNA typing. Watanabe K; Iwashima Y; Akutsu T; Sekiguchi K; Sakurada K Leg Med (Tokyo); 2014 Jan; 16(1):56-9. PubMed ID: 24296038 [TBL] [Abstract][Full Text] [Related]
18. CyProQuant-PCR: a real time RT-PCR technique for profiling human cytokines, based on external RNA standards, readily automatable for clinical use. Boeuf P; Vigan-Womas I; Jublot D; Loizon S; Barale JC; Akanmori BD; Mercereau-Puijalon O; Behr C BMC Immunol; 2005 Mar; 6():5. PubMed ID: 15748278 [TBL] [Abstract][Full Text] [Related]
19. Real-time reverse transcriptase polymerase chain reaction: an improvement in detecting mRNA levels in mouse cranial tissue. Singh R; Recinos RF; Agresti M; Schaefer RB; Bosbous M; Gosain AK Plast Reconstr Surg; 2006 Jun; 117(7):2227-34. PubMed ID: 16772922 [TBL] [Abstract][Full Text] [Related]
20. Quantitative PCR methods for RNA and DNA in marine sediments: maximizing yield while overcoming inhibition. Lloyd KG; Macgregor BJ; Teske A FEMS Microbiol Ecol; 2010 Apr; 72(1):143-51. PubMed ID: 20059545 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]