BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 25270528)

  • 1. Comparison of body temperature readings between an implantable microchip and a cloacal probe in lorikeets (Trichoglossus haematodus sp.).
    Hoskinson C; McCain S; Allender MC
    Zoo Biol; 2014; 33(5):452-4. PubMed ID: 25270528
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of temperature readings from a percutaneous thermal sensing microchip with temperature readings from a digital rectal thermometer in equids.
    Robinson TR; Hussey SB; Hill AE; Heckendorf CC; Stricklin JB; Traub-Dargatz JL
    J Am Vet Med Assoc; 2008 Aug; 233(4):613-7. PubMed ID: 18710319
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of three methods of temperature measurement in hypothermic, euthermic, and hyperthermic dogs.
    Greer RJ; Cohn LA; Dodam JR; Wagner-Mann CC; Mann FA
    J Am Vet Med Assoc; 2007 Jun; 230(12):1841-8. PubMed ID: 17571987
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessment of the use of temperature-sensitive microchips to determine core body temperature in goats.
    Torrao NA; Hetem RS; Meyer LC; Fick LG
    Vet Rec; 2011 Mar; 168(12):328. PubMed ID: 21498217
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of rectal, microchip transponder, and infrared thermometry techniques for obtaining body temperature in the laboratory rabbit (Oryctolagus cuniculus).
    Chen PH; White CE
    J Am Assoc Lab Anim Sci; 2006 Jan; 45(1):57-63. PubMed ID: 16539337
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of Digital Rectal and Microchip Transponder Thermometry in Ferrets (Mustela putorius furo).
    Maxwell BM; Brunell MK; Olsen CH; Bentzel DE
    J Am Assoc Lab Anim Sci; 2016; 55(3):331-5. PubMed ID: 27177569
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of Body Temperatures of Goats, Horses, and Sheep Measured With a Tympanic Infrared Thermometer, an Implantable Microchip Transponder, and a Rectal Thermometer.
    Goodwin S
    Contemp Top Lab Anim Sci; 1998 May; 37(3):51-55. PubMed ID: 12456161
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessment of Non-Contact Infrared Thermometer Measurement Sites in Birds.
    Anderson J; Kaplan-Stein S; Adolph S; Peralta JM
    J Appl Anim Welf Sci; 2020; 23(2):131-139. PubMed ID: 31526053
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of Microchip Transponder and Noncontact Infrared Thermometry with Rectal Thermometry in Domestic Swine (Sus scrofa domestica).
    Jara AL; Hanson JM; Gabbard JD; Johnson SK; Register ET; He B; Tompkins SM
    J Am Assoc Lab Anim Sci; 2016; 55(5):588-93. PubMed ID: 27657715
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of digital rectal and microchip transponder thermometry in cats.
    Quimby JM; Olea-Popelka F; Lappin MR
    J Am Assoc Lab Anim Sci; 2009 Jul; 48(4):402-4. PubMed ID: 19653950
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A comparison of non-contact, subcutaneous, and rectal temperatures in captive owl monkeys (Aotus sp.).
    Shelton LJ; White CE; Felt SA
    J Med Primatol; 2006 Dec; 35(6):346-51. PubMed ID: 17214662
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of noncontact infrared thermometry and 3 commercial subcutaneous temperature transponding microchips with rectal thermometry in rhesus macaques (Macaca mulatta).
    Brunell MK
    J Am Assoc Lab Anim Sci; 2012 Jul; 51(4):479-84. PubMed ID: 23043815
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A comprehensive evaluation of microchips to measure temperature in dairy calves.
    Woodrum Setser MM; Cantor MC; Costa JHC
    J Dairy Sci; 2020 Oct; 103(10):9290-9300. PubMed ID: 32828511
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of dilution degree of commercial nectar and provision of fruit on food, energy and nutrient intake in two rainbow lorikeet subspecies.
    Kalmar ID; van Loon M; Bürkle M; Reinschmidt M; Waugh D; Werquin G; Janssens GP
    Zoo Biol; 2009 Mar; 28(2):98-106. PubMed ID: 19367623
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Subcutaneous thermal sensor microchip validation in vervet monkeys (Chlorocebus pygerythrus) during normothermic and hypothermic situations.
    Navarro-Serra A; Sanz-Cabañes H
    J Med Primatol; 2019 Apr; 48(2):77-81. PubMed ID: 30680729
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of body surface temperature measurement and conventional methods for measuring temperature in the mouse.
    Newsom DM; Bolgos GL; Colby L; Nemzek JA
    Contemp Top Lab Anim Sci; 2004 Sep; 43(5):13-8. PubMed ID: 15461434
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Accuracy of infrared ear thermometry and traditional temperature methods in young children.
    Erickson RS; Woo TM
    Heart Lung; 1994; 23(3):181-95. PubMed ID: 8039988
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Screening microchip sites to predict body temperature in young calves.
    Vieira EA; Belli AL; Campolina JP; Pacheco Rodrigues JP; Coelho SG; Campos MM; Tomich TR; Pereira LGR
    J Therm Biol; 2021 Aug; 100():103052. PubMed ID: 34503799
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fatal coxiellosis in Swainson's Blue Mountain Rainbow Lorikeets (Trichoglossus haematodus moluccanus).
    Woc-Colburn AM; Garner MM; Bradway D; West G; D'Agostino J; Trupkiewicz J; Barr B; Anderson SE; Rurangirwa FR; Nordhausen RW
    Vet Pathol; 2008 Mar; 45(2):247-54. PubMed ID: 18424842
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Agreement between auricular and rectal measurements of body temperature in healthy cats.
    Sousa MG; Carareto R; Pereira-Junior VA; Aquino MC
    J Feline Med Surg; 2013 Apr; 15(4):275-9. PubMed ID: 23090330
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.