These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 2527073)

  • 21. The resistance of some rat cerebral arteries to the vasorelaxant effect of cromakalim and other K+ channel openers.
    McPherson GA; Stork AP
    Br J Pharmacol; 1992 Jan; 105(1):51-8. PubMed ID: 1534504
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cromakalim, a potassium channel activator: a comparison of its cardiovascular haemodynamic profile and tissue specificity with those of pinacidil and nicorandil.
    Longman SD; Clapham JC; Wilson C; Hamilton TC
    J Cardiovasc Pharmacol; 1988; 12(5):535-42. PubMed ID: 2468052
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Essential role of nucleotide diphosphates in nicorandil-mediated activation of cardiac ATP-sensitive K+ channel. A comparison with pinacidil and lemakalim.
    Shen WK; Tung RT; Machulda MM; Kurachi Y
    Circ Res; 1991 Oct; 69(4):1152-8. PubMed ID: 1834361
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Evidence that pinacidil may promote the opening of ATP-sensitive K+ channels yet inhibit the opening of Ca2(+)-activated K+ channels in K(+)-contracted canine mesenteric artery.
    Masuzawa K; Matsuda T; Asano M
    Br J Pharmacol; 1990 May; 100(1):143-9. PubMed ID: 2115387
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Prejunctional effects of cromakalim, nicorandil and pinacidil on noradrenergic transmission in rat isolated mesenteric artery.
    Fabiani ME; Story DF
    J Auton Pharmacol; 1994 Apr; 14(2):87-98. PubMed ID: 8051201
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Pharmacological properties of ATP-sensitive K+ channels in mammalian skeletal muscle cells.
    Allard B; Lazdunski M
    Eur J Pharmacol; 1993 Jun; 236(3):419-26. PubMed ID: 8359200
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Vasodilatation of canine cerebral arteries by nicorandil, pinacidil and lemakalim.
    Zhang H; Stockbridge N; Weir B; Vollrath B; Cook D
    Gen Pharmacol; 1992 Mar; 23(2):197-201. PubMed ID: 1353469
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Comparison of the in vitro effects of K+ channel modulators on detrusor and portal vein strips from guinea pigs.
    Zografos P; Li JH; Kau ST
    Pharmacology; 1992; 45(4):216-30. PubMed ID: 1438528
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Modulation of intracellular calcium by potassium channel openers in vascular muscle.
    Erne P; Hermsmeyer K
    Naunyn Schmiedebergs Arch Pharmacol; 1991 Dec; 344(6):706-15. PubMed ID: 1775202
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Ca-antagonist, K-channel-opener in the treatment of patients with congestive heart failure].
    Satoh K
    Nihon Rinsho; 1993 May; 51(5):1293-8. PubMed ID: 8331797
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Comparative effects of the potassium channel openers cromakalim and pinacidil and the cromakalim analog U-89232 on isolated vascular and cardiac tissue.
    Norman NR; Toombs CF; Khan SA; Buchanan LV; Cimini MG; Gibson JK; Meisheri KD; Shebuski RJ
    Pharmacology; 1994 Aug; 49(2):86-95. PubMed ID: 7972325
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Intracellular acidification and ADP enhance nicorandil induction of ATP sensitive potassium channel current in cardiomyocytes.
    Jahangir A; Terzic A; Kurachi Y
    Cardiovasc Res; 1994 Jun; 28(6):831-5. PubMed ID: 7923287
    [TBL] [Abstract][Full Text] [Related]  

  • 33. SUR2 subtype (A and B)-dependent differential activation of the cloned ATP-sensitive K+ channels by pinacidil and nicorandil.
    Shindo T; Yamada M; Isomoto S; Horio Y; Kurachi Y
    Br J Pharmacol; 1998 Jul; 124(5):985-91. PubMed ID: 9692785
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Nicorandil as a nitrate, and cromakalim as a potassium channel opener, dilate isolated porcine large coronary arteries in an agonist-nonselective manner.
    Satoh K; Mori T; Yamada H; Taira N
    Cardiovasc Drugs Ther; 1993 Aug; 7(4):691-9. PubMed ID: 8241013
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Potassium channel openers relax A23187-induced nifedipine-resistant contraction of rat aorta.
    Yamashita T; Masuda Y; Tanaka S
    J Cardiovasc Pharmacol; 1994 Dec; 24(6):914-20. PubMed ID: 7898074
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effects of putative activators of K+ channels in mouse pancreatic beta-cells.
    Garrino MG; Plant TD; Henquin JC
    Br J Pharmacol; 1989 Nov; 98(3):957-65. PubMed ID: 2531623
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effects of potassium channel openers and calcium channel blockers on the force responses of the electrically driven rat right ventricle strip.
    Bishop BE; Doggrell SA
    J Auton Pharmacol; 1992 Feb; 12(1):5-14. PubMed ID: 1551924
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cardiohemodynamic effects of cromakalim and pinacidil, potassium-channel openers, in the dog, special reference to venous return.
    Gotanda K; Yokoyama H; Satoh K; Taira N
    Cardiovasc Drugs Ther; 1989 Aug; 3(4):507-15. PubMed ID: 2488102
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Characterisation of the effects of potassium channel modulating agents on mouse intestinal smooth muscle.
    Yeung CK; McCurrie JR; Wood D
    J Pharm Pharmacol; 2002 Mar; 54(3):425-33. PubMed ID: 11902810
    [TBL] [Abstract][Full Text] [Related]  

  • 40. ATP sensitive potassium channel openers are of potential benefit in ischaemic heart disease.
    Cavero I; Premmereur J
    Cardiovasc Res; 1994 Jan; 28(1):32-3. PubMed ID: 8111790
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.