BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 25270772)

  • 21. Inhibition of the NRF2/KEAP1 Axis: A Promising Therapeutic Strategy to Alter Redox Balance of Cancer Cells.
    Panieri E; Saso L
    Antioxid Redox Signal; 2021 Jun; 34(18):1428-1483. PubMed ID: 33403898
    [No Abstract]   [Full Text] [Related]  

  • 22. The NRF2 transcriptional target NQO1 has low mRNA levels in TP53-mutated endometrial carcinomas.
    Beinse G; Just PA; Rance B; Izac B; Letourneur F; Saidu NEB; Chouzenoux S; Nicco C; Goldwasser F; Pasmant E; Batteux F; Borghese B; Alexandre J; Leroy K
    PLoS One; 2019; 14(3):e0214416. PubMed ID: 30908539
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Keap1/Nrf2 signaling regulates oxidative stress tolerance and lifespan in Drosophila.
    Sykiotis GP; Bohmann D
    Dev Cell; 2008 Jan; 14(1):76-85. PubMed ID: 18194654
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Molecular mechanisms of the Keap1–Nrf2 pathway in stress response and cancer evolution.
    Taguchi K; Motohashi H; Yamamoto M
    Genes Cells; 2011 Feb; 16(2):123-40. PubMed ID: 21251164
    [TBL] [Abstract][Full Text] [Related]  

  • 25. NRF2 DLG Domain Mutations Identified in Japanese Liver Cancer Patients Affect the Transcriptional Activity in HCC Cell Lines.
    Haque E; Śmiech M; Łuczyńska K; Bouchard MF; Viger R; Kono H; Pierzchała M; Taniguchi H
    Int J Mol Sci; 2021 May; 22(10):. PubMed ID: 34069882
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Molecular Mechanisms Underlying Hepatocellular Carcinoma Induction by Aberrant NRF2 Activation-Mediated Transcription Networks: Interaction of NRF2-KEAP1 Controls the Fate of Hepatocarcinogenesis.
    Haque E; Karim MR; Salam Teeli A; Śmiech M; Leszczynski P; Winiarczyk D; Parvanov ED; Atanasov AG; Taniguchi H
    Int J Mol Sci; 2020 Jul; 21(15):. PubMed ID: 32751080
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A Naturally-Occurring Dominant-Negative Inhibitor of Keap1 Competitively against Its Negative Regulation of Nrf2.
    Qiu L; Wang M; Zhu Y; Xiang Y; Zhang Y
    Int J Mol Sci; 2018 Jul; 19(8):. PubMed ID: 30042301
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Therapeutic Targeting of the NRF2 Signaling Pathway in Cancer.
    Telkoparan-Akillilar P; Panieri E; Cevik D; Suzen S; Saso L
    Molecules; 2021 Mar; 26(5):. PubMed ID: 33808001
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Estrogen controls the survival of BRCA1-deficient cells via a PI3K-NRF2-regulated pathway.
    Gorrini C; Gang BP; Bassi C; Wakeham A; Baniasadi SP; Hao Z; Li WY; Cescon DW; Li YT; Molyneux S; Penrod N; Lupien M; Schmidt EE; Stambolic V; Gauthier ML; Mak TW
    Proc Natl Acad Sci U S A; 2014 Mar; 111(12):4472-7. PubMed ID: 24567396
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Dihydro-CDDO-trifluoroethyl amide (dh404), a novel Nrf2 activator, suppresses oxidative stress in cardiomyocytes.
    Ichikawa T; Li J; Meyer CJ; Janicki JS; Hannink M; Cui T
    PLoS One; 2009 Dec; 4(12):e8391. PubMed ID: 20027226
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The discovery and characterization of K-563, a novel inhibitor of the Keap1/Nrf2 pathway produced by Streptomyces sp.
    Hori R; Yamaguchi K; Sato H; Watanabe M; Tsutsumi K; Iwamoto S; Abe M; Onodera H; Nakamura S; Nakai R
    Cancer Med; 2019 Mar; 8(3):1157-1168. PubMed ID: 30735010
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Keap1 is a redox-regulated substrate adaptor protein for a Cul3-dependent ubiquitin ligase complex.
    Zhang DD; Lo SC; Cross JV; Templeton DJ; Hannink M
    Mol Cell Biol; 2004 Dec; 24(24):10941-53. PubMed ID: 15572695
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mechanistic studies of the Nrf2-Keap1 signaling pathway.
    Zhang DD
    Drug Metab Rev; 2006; 38(4):769-89. PubMed ID: 17145701
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Nrf2 is commonly activated in papillary thyroid carcinoma, and it controls antioxidant transcriptional responses and viability of cancer cells.
    Ziros PG; Manolakou SD; Habeos IG; Lilis I; Chartoumpekis DV; Koika V; Soares P; Kyriazopoulou VE; Scopa CD; Papachristou DJ; Sykiotis GP
    J Clin Endocrinol Metab; 2013 Aug; 98(8):E1422-7. PubMed ID: 23766517
    [TBL] [Abstract][Full Text] [Related]  

  • 35. NRF2 Regulates HER1 Signaling Pathway to Modulate the Sensitivity of Ovarian Cancer Cells to Lapatinib and Erlotinib.
    Kankia IH; Khalil HS; Langdon SP; Moult PR; Bown JL; Deeni YY
    Oxid Med Cell Longev; 2017; 2017():1864578. PubMed ID: 29410730
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Nuclear Factor Erythroid 2-Related Factor 2 in Regulating Cancer Metabolism.
    Smolková K; Mikó E; Kovács T; Leguina-Ruzzi A; Sipos A; Bai P
    Antioxid Redox Signal; 2020 Nov; 33(13):966-997. PubMed ID: 31989830
    [No Abstract]   [Full Text] [Related]  

  • 37. Decline in NRF2-regulated antioxidants in chronic obstructive pulmonary disease lungs due to loss of its positive regulator, DJ-1.
    Malhotra D; Thimmulappa R; Navas-Acien A; Sandford A; Elliott M; Singh A; Chen L; Zhuang X; Hogg J; Pare P; Tuder RM; Biswal S
    Am J Respir Crit Care Med; 2008 Sep; 178(6):592-604. PubMed ID: 18556627
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dual roles of NRF2 in tumor prevention and progression: possible implications in cancer treatment.
    Moon EJ; Giaccia A
    Free Radic Biol Med; 2015 Feb; 79():292-9. PubMed ID: 25458917
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Potential Applications of NRF2 Inhibitors in Cancer Therapy.
    Panieri E; Saso L
    Oxid Med Cell Longev; 2019; 2019():8592348. PubMed ID: 31097977
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Targeting the KEAP1-NRF2 System to Prevent Kidney Disease Progression.
    Nezu M; Suzuki N; Yamamoto M
    Am J Nephrol; 2017; 45(6):473-483. PubMed ID: 28502971
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.