These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
198 related articles for article (PubMed ID: 25271167)
1. A group 6 late embryogenesis abundant protein from common bean is a disordered protein with extended helical structure and oligomer-forming properties. Rivera-Najera LY; Saab-Rincón G; Battaglia M; Amero C; Pulido NO; García-Hernández E; Solórzano RM; Reyes JL; Covarrubias AA J Biol Chem; 2014 Nov; 289(46):31995-32009. PubMed ID: 25271167 [TBL] [Abstract][Full Text] [Related]
2. Conformation of a group 2 late embryogenesis abundant protein from soybean. Evidence of poly (L-proline)-type II structure. Soulages JL; Kim K; Arrese EL; Walters C; Cushman JC Plant Physiol; 2003 Mar; 131(3):963-75. PubMed ID: 12644649 [TBL] [Abstract][Full Text] [Related]
3. Temperature-induced extended helix/random coil transitions in a group 1 late embryogenesis-abundant protein from soybean. Soulages JL; Kim K; Walters C; Cushman JC Plant Physiol; 2002 Mar; 128(3):822-32. PubMed ID: 11891239 [TBL] [Abstract][Full Text] [Related]
4. The effect of phosphorylation on the salt-tolerance-related functions of the soybean protein PM18, a member of the group-3 LEA protein family. Liu Y; Yang M; Cheng H; Sun N; Liu S; Li S; Wang Y; Zheng Y; Uversky VN Biochim Biophys Acta Proteins Proteom; 2017 Nov; 1865(11 Pt A):1291-1303. PubMed ID: 28867216 [TBL] [Abstract][Full Text] [Related]
5. Group 4 late embryogenesis abundant proteins as a model to study intrinsically disordered proteins in plants. Cuevas-Velazquez CL; Reyes JL; Covarrubias AA Plant Signal Behav; 2017 Jul; 12(7):e1343777. PubMed ID: 28650260 [TBL] [Abstract][Full Text] [Related]
6. Structural properties and enzyme stabilization function of the intrinsically disordered LEA_4 protein TdLEA3 from wheat. Koubaa S; Bremer A; Hincha DK; Brini F Sci Rep; 2019 Mar; 9(1):3720. PubMed ID: 30842512 [TBL] [Abstract][Full Text] [Related]
7. The in vitro structure and functions of the disordered late embryogenesis abundant three proteins. Singh KK; Graether SP Protein Sci; 2021 Mar; 30(3):678-692. PubMed ID: 33474748 [TBL] [Abstract][Full Text] [Related]
8. The Unstructured N-terminal Region of Arabidopsis Group 4 Late Embryogenesis Abundant (LEA) Proteins Is Required for Folding and for Chaperone-like Activity under Water Deficit. Cuevas-Velazquez CL; Saab-Rincón G; Reyes JL; Covarrubias AA J Biol Chem; 2016 May; 291(20):10893-903. PubMed ID: 27006402 [TBL] [Abstract][Full Text] [Related]
9. Structural transitions in the intrinsically disordered plant dehydration stress protein LEA7 upon drying are modulated by the presence of membranes. Popova AV; Hundertmark M; Seckler R; Hincha DK Biochim Biophys Acta; 2011 Jul; 1808(7):1879-87. PubMed ID: 21443857 [TBL] [Abstract][Full Text] [Related]
10. Characterization of Phaseolus vulgaris cDNA clones responsive to water deficit: identification of a novel late embryogenesis abundant-like protein. Colmenero-Flores JM; Campos F; Garciarrubio A; Covarrubias AA Plant Mol Biol; 1997 Nov; 35(4):393-405. PubMed ID: 9349263 [TBL] [Abstract][Full Text] [Related]
11. Functional and conformational properties of phaseolin (Phaseolus vulgris L.) and kidney bean protein isolate: a comparative study. Yin SW; Tang CH; Wen QB; Yang XQ J Sci Food Agric; 2010 Mar; 90(4):599-607. PubMed ID: 20355087 [TBL] [Abstract][Full Text] [Related]
12. Transition from natively unfolded to folded state induced by desiccation in an anhydrobiotic nematode protein. Goyal K; Tisi L; Basran A; Browne J; Burnell A; Zurdo J; Tunnacliffe A J Biol Chem; 2003 Apr; 278(15):12977-84. PubMed ID: 12569097 [TBL] [Abstract][Full Text] [Related]
13. Influence of drying on the secondary structure of intrinsically disordered and globular proteins. Hundertmark M; Popova AV; Rausch S; Seckler R; Hincha DK Biochem Biophys Res Commun; 2012 Jan; 417(1):122-8. PubMed ID: 22155233 [TBL] [Abstract][Full Text] [Related]
14. Pvlea-18, a member of a new late-embryogenesis-abundant protein family that accumulates during water stress and in the growing regions of well-irrigated bean seedlings. Colmenero-Flores JM; Moreno LP; Smith CE; Covarrubias AA Plant Physiol; 1999 May; 120(1):93-104. PubMed ID: 10318687 [TBL] [Abstract][Full Text] [Related]
15. Conformational and thermal properties of phaseolin, the major storage protein of red kidney bean (Phaseolus vulgaris L.). Yin SW; Tang CH; Wen QB; Yang XQ J Sci Food Agric; 2011 Jan; 91(1):94-9. PubMed ID: 20815040 [TBL] [Abstract][Full Text] [Related]
16. A predicted N-terminal helical domain of a Group 1 LEA protein is required for protection of enzyme activity from drying. Gilles GJ; Hines KM; Manfre AJ; Marcotte WR Plant Physiol Biochem; 2007; 45(6-7):389-99. PubMed ID: 17544288 [TBL] [Abstract][Full Text] [Related]
17. Late Embryogenesis Abundant (LEA) proteins in legumes. Battaglia M; Covarrubias AA Front Plant Sci; 2013; 4():190. PubMed ID: 23805145 [TBL] [Abstract][Full Text] [Related]
18. Gene cloning and characterization of a soybean (Glycine max L.) LEA protein, GmPM16. Shih MD; Lin SC; Hsieh JS; Tsou CH; Chow TY; Lin TP; Hsing YI Plant Mol Biol; 2004 Nov; 56(5):689-703. PubMed ID: 15803408 [TBL] [Abstract][Full Text] [Related]
19. A Phosphorylation-Induced Switch in the Nuclear Localization Sequence of the Intrinsically Disordered NUPR1 Hampers Binding to Importin. Neira JL; Rizzuti B; Jiménez-Alesanco A; Palomino-Schätzlein M; Abián O; Velázquez-Campoy A; Iovanna JL Biomolecules; 2020 Sep; 10(9):. PubMed ID: 32933064 [TBL] [Abstract][Full Text] [Related]
20. Insights on Structure and Function of a Late Embryogenesis Abundant Protein from Saucedo AL; Hernández-Domínguez EE; de Luna-Valdez LA; Guevara-García AA; Escobedo-Moratilla A; Bojorquéz-Velázquez E; Del Río-Portilla F; Fernández-Velasco DA; Barba de la Rosa AP Front Plant Sci; 2017; 8():497. PubMed ID: 28439280 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]