These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
210 related articles for article (PubMed ID: 25271262)
1. Accumulation of 5-hydroxynorvaline in maize (Zea mays) leaves is induced by insect feeding and abiotic stress. Yan J; Lipka AE; Schmelz EA; Buckler ES; Jander G J Exp Bot; 2015 Feb; 66(2):593-602. PubMed ID: 25271262 [TBL] [Abstract][Full Text] [Related]
2. Additive effects of two quantitative trait loci that confer Rhopalosiphum maidis (corn leaf aphid) resistance in maize inbred line Mo17. Betsiashvili M; Ahern KR; Jander G J Exp Bot; 2015 Feb; 66(2):571-8. PubMed ID: 25249072 [TBL] [Abstract][Full Text] [Related]
3. Genetic mapping shows intraspecific variation and transgressive segregation for caterpillar-induced aphid resistance in maize. Tzin V; Lindsay PL; Christensen SA; Meihls LN; Blue LB; Jander G Mol Ecol; 2015 Nov; 24(22):5739-50. PubMed ID: 26462033 [TBL] [Abstract][Full Text] [Related]
4. Ethylene Contributes to maize insect resistance1-Mediated Maize Defense against the Phloem Sap-Sucking Corn Leaf Aphid. Louis J; Basu S; Varsani S; Castano-Duque L; Jiang V; Williams WP; Felton GW; Luthe DS Plant Physiol; 2015 Sep; 169(1):313-24. PubMed ID: 26253737 [TBL] [Abstract][Full Text] [Related]
5. Asymmetry in Herbivore Effector Responses: Caterpillar Frass Effectors Reduce Performance of a Subsequent Herbivore. Ray S; Helms AM; Matulis NL; Davidson-Lowe E; Grisales W; Ali JG J Chem Ecol; 2020 Jan; 46(1):76-83. PubMed ID: 31845135 [TBL] [Abstract][Full Text] [Related]
6. Caterpillar attack triggers accumulation of the toxic maize protein RIP2. Chuang WP; Herde M; Ray S; Castano-Duque L; Howe GA; Luthe DS New Phytol; 2014 Feb; 201(3):928-939. PubMed ID: 24304477 [TBL] [Abstract][Full Text] [Related]
7. Dynamic Maize Responses to Aphid Feeding Are Revealed by a Time Series of Transcriptomic and Metabolomic Assays. Tzin V; Fernandez-Pozo N; Richter A; Schmelz EA; Schoettner M; Schäfer M; Ahern KR; Meihls LN; Kaur H; Huffaker A; Mori N; Degenhardt J; Mueller LA; Jander G Plant Physiol; 2015 Nov; 169(3):1727-43. PubMed ID: 26378100 [TBL] [Abstract][Full Text] [Related]
8. Intraplant communication in maize contributes to defense against insects. Varsani S; Basu S; Williams WP; Felton GW; Luthe DS; Louis J Plant Signal Behav; 2016 Aug; 11(8):e1212800. PubMed ID: 27467304 [TBL] [Abstract][Full Text] [Related]
10. A role for 9-lipoxygenases in maize defense against insect herbivory. Woldemariam MG; Ahern K; Jander G; Tzin V Plant Signal Behav; 2018 Jan; 13(1):e1422462. PubMed ID: 29293391 [TBL] [Abstract][Full Text] [Related]
11. Natural variation in maize aphid resistance is associated with 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one glucoside methyltransferase activity. Meihls LN; Handrick V; Glauser G; Barbier H; Kaur H; Haribal MM; Lipka AE; Gershenzon J; Buckler ES; Erb M; Köllner TG; Jander G Plant Cell; 2013 Jun; 25(6):2341-55. PubMed ID: 23898034 [TBL] [Abstract][Full Text] [Related]
12. 12-Oxo-Phytodienoic Acid Acts as a Regulator of Maize Defense against Corn Leaf Aphid. Varsani S; Grover S; Zhou S; Koch KG; Huang PC; Kolomiets MV; Williams WP; Heng-Moss T; Sarath G; Luthe DS; Jander G; Louis J Plant Physiol; 2019 Apr; 179(4):1402-1415. PubMed ID: 30643012 [TBL] [Abstract][Full Text] [Related]
13. Combining quantitative trait locus mapping with multiomics profiling reveals genetic control of corn leaf aphid (Rhopalosiphum maidis) resistance in maize. Wang T; Wang K; Wang C; Zhao Y; Tao Z; Li J; Wang L; Shi J; Huang S; Xie C; Li P J Exp Bot; 2023 Jun; 74(12):3749-3764. PubMed ID: 36964900 [TBL] [Abstract][Full Text] [Related]
14. Inhibition of Rhopalosiphum maidis (Corn Leaf Aphid) Growth on Maize by Virus-Induced Gene Silencing with Sugarcane Mosaic Virus. Chung SH; Jander G Methods Mol Biol; 2022; 2360():139-153. PubMed ID: 34495513 [TBL] [Abstract][Full Text] [Related]
15. A Physiological and Behavioral Mechanism for Leaf Herbivore-Induced Systemic Root Resistance. Erb M; Robert CA; Marti G; Lu J; Doyen GR; Villard N; Barrière Y; French BW; Wolfender JL; Turlings TC; Gershenzon J Plant Physiol; 2015 Dec; 169(4):2884-94. PubMed ID: 26430225 [TBL] [Abstract][Full Text] [Related]
16. A sugarcane mosaic virus vector for rapid in planta screening of proteins that inhibit the growth of insect herbivores. Chung SH; Bigham M; Lappe RR; Chan B; Nagalakshmi U; Whitham SA; Dinesh-Kumar SP; Jander G Plant Biotechnol J; 2021 Sep; 19(9):1713-1724. PubMed ID: 33763921 [TBL] [Abstract][Full Text] [Related]
17. High susceptibility of Bt maize to aphids enhances the performance of parasitoids of lepidopteran pests. Faria CA; Wäckers FL; Pritchard J; Barrett DA; Turlings TC PLoS One; 2007 Jul; 2(7):e600. PubMed ID: 17622345 [TBL] [Abstract][Full Text] [Related]
18. Foliar herbivory by caterpillars and aphids differentially affects phytohormonal signalling in roots and plant defence to a root herbivore. Karssemeijer PN; Reichelt M; Gershenzon J; van Loon J; Dicke M Plant Cell Environ; 2020 Mar; 43(3):775-786. PubMed ID: 31873957 [TBL] [Abstract][Full Text] [Related]
19. Foliar herbivory triggers local and long distance defense responses in maize. Ankala A; Kelley RY; Rowe DE; Williams WP; Luthe DS Plant Sci; 2013 Feb; 199-200():103-12. PubMed ID: 23265323 [TBL] [Abstract][Full Text] [Related]
20. Molecular, biochemical, and organismal analyses of tomato plants simultaneously attacked by herbivores from two feeding guilds. Rodriguez-Saona CR; Musser RO; Vogel H; Hum-Musser SM; Thaler JS J Chem Ecol; 2010 Oct; 36(10):1043-57. PubMed ID: 20820890 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]