These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 25271262)

  • 21. Aphid-Triggered Changes in Oxidative Damage Markers of Nucleic Acids, Proteins, and Lipids in Maize (
    Sytykiewicz H; Łukasik I; Goławska S; Chrzanowski G
    Int J Mol Sci; 2019 Jul; 20(15):. PubMed ID: 31370193
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Deciphering the role of NADPH oxidase in complex interactions between maize (Zea mays L.) genotypes and cereal aphids.
    Sytykiewicz H
    Biochem Biophys Res Commun; 2016 Jul; 476(2):90-5. PubMed ID: 27178208
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Highly localized and persistent induction of Bx1-dependent herbivore resistance factors in maize.
    Maag D; Köhler A; Robert CA; Frey M; Wolfender JL; Turlings TC; Glauser G; Erb M
    Plant J; 2016 Dec; 88(6):976-991. PubMed ID: 27538820
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The influence of intact-plant and excised-leaf bioassay designs on volicitin- and jasmonic acid-induced sesquiterpene volatile release in Zea mays.
    Schmelz EA; Alborn HT; Tumlinson JH
    Planta; 2001 Dec; 214(2):171-9. PubMed ID: 11800380
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Transcriptomic and volatile signatures associated with maize defense against corn leaf aphid.
    Pingault L; Varsani S; Palmer N; Ray S; Williams WP; Luthe DS; Ali JG; Sarath G; Louis J
    BMC Plant Biol; 2021 Mar; 21(1):138. PubMed ID: 33726668
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Spodoptera frugiperda Caterpillars Suppress Herbivore-Induced Volatile Emissions in Maize.
    De Lange ES; Laplanche D; Guo H; Xu W; Vlimant M; Erb M; Ton J; Turlings TCJ
    J Chem Ecol; 2020 Mar; 46(3):344-360. PubMed ID: 32002720
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Phytohormones in Fall Armyworm Saliva Modulate Defense Responses in Plants.
    Acevedo FE; Smith P; Peiffer M; Helms A; Tooker J; Felton GW
    J Chem Ecol; 2019 Jul; 45(7):598-609. PubMed ID: 31218595
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Plant Bio-Wars: Maize Protein Networks Reveal Tissue-Specific Defense Strategies in Response to a Root Herbivore.
    Castano-Duque L; Helms A; Ali JG; Luthe DS
    J Chem Ecol; 2018 Aug; 44(7-8):727-745. PubMed ID: 29926336
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Natural variation in maize defense against insect herbivores.
    Meihls LN; Kaur H; Jander G
    Cold Spring Harb Symp Quant Biol; 2012; 77():269-83. PubMed ID: 23223408
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Downstairs drivers--root herbivores shape communities of above-ground herbivores and natural enemies via changes in plant nutrients.
    Johnson SN; Mitchell C; McNicol JW; Thompson J; Karley AJ
    J Anim Ecol; 2013 Sep; 82(5):1021-30. PubMed ID: 23488539
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Potato tuber herbivory increases resistance to aboveground lepidopteran herbivores.
    Kumar P; Ortiz EV; Garrido E; Poveda K; Jander G
    Oecologia; 2016 Sep; 182(1):177-87. PubMed ID: 27147449
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Host plant adaptability and proteomic differences of diverse Rhopalosiphum maidis (Fitch) lineages.
    Guo J; Hao G; Hatt S; Wang Z; Francis F
    Arch Insect Biochem Physiol; 2022 Jan; 109(1):e21853. PubMed ID: 34820894
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fine-tuning the 'plant domestication-reduced defense' hypothesis: specialist vs generalist herbivores.
    Gaillard MDP; Glauser G; Robert CAM; Turlings TCJ
    New Phytol; 2018 Jan; 217(1):355-366. PubMed ID: 28877341
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Fighting on two fronts: Elevated insect resistance in flooded maize.
    Block AK; Hunter CT; Sattler SE; Rering C; McDonald S; Basset GJ; Christensen SA
    Plant Cell Environ; 2020 Jan; 43(1):223-234. PubMed ID: 31411732
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Using Azadirachtin to Transform
    Lin S; Li S; Liu Z; Zhang L; Wu H; Cheng D; Zhang Z
    Toxins (Basel); 2021 Aug; 13(8):. PubMed ID: 34437412
    [No Abstract]   [Full Text] [Related]  

  • 36. Herbivore cues from the fall armyworm (Spodoptera frugiperda) larvae trigger direct defenses in maize.
    Chuang WP; Ray S; Acevedo FE; Peiffer M; Felton GW; Luthe DS
    Mol Plant Microbe Interact; 2014 May; 27(5):461-70. PubMed ID: 24329171
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Maize Endochitinase Expression in Response to Fall Armyworm Herbivory.
    Han Y; Taylor EB; Luthe D
    J Chem Ecol; 2021 Jul; 47(7):689-706. PubMed ID: 34056671
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Flooding and Herbivory Interact to Alter Volatile Organic Compound Emissions in Two Maize Hybrids.
    Ngumbi EN; Ugarte CM
    J Chem Ecol; 2021 Jul; 47(7):707-718. PubMed ID: 34125370
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Turnabout Is Fair Play: Herbivory-Induced Plant Chitinases Excreted in Fall Armyworm Frass Suppress Herbivore Defenses in Maize.
    Ray S; Alves PC; Ahmad I; Gaffoor I; Acevedo FE; Peiffer M; Jin S; Han Y; Shakeel S; Felton GW; Luthe DS
    Plant Physiol; 2016 May; 171(1):694-706. PubMed ID: 26979328
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ethylene signaling mediates a maize defense response to insect herbivory.
    Harfouche AL; Shivaji R; Stocker R; Williams PW; Luthe DS
    Mol Plant Microbe Interact; 2006 Feb; 19(2):189-99. PubMed ID: 16529381
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.