These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 25271359)

  • 1. Classification of fractional order biomarkers for anomalous diffusion using q-space entropy.
    Magin RL; Ingo C; Triplett W; Colon-Perez L; Mareci TH
    Crit Rev Biomed Eng; 2014; 42(1):63-83. PubMed ID: 25271359
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of Anomalous Diffusion in Porous Biological Tissues Using Fractional Order Derivatives and Entropy.
    Magin RL; Ingo C; Colon-Perez L; Triplett W; Mareci TH
    Microporous Mesoporous Mater; 2013 Sep; 178():39-43. PubMed ID: 24072979
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On random walks and entropy in diffusion-weighted magnetic resonance imaging studies of neural tissue.
    Ingo C; Magin RL; Colon-Perez L; Triplett W; Mareci TH
    Magn Reson Med; 2014 Feb; 71(2):617-27. PubMed ID: 23508765
    [TBL] [Abstract][Full Text] [Related]  

  • 4. New Insights into the Fractional Order Diffusion Equation Using Entropy and Kurtosis.
    Ingo C; Magin RL; Parrish TB
    Entropy (Basel); 2014 Nov; 16(11):5838-5852. PubMed ID: 28344436
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Parsimonious continuous time random walk models and kurtosis for diffusion in magnetic resonance of biological tissue.
    Ingo C; Sui Y; Chen Y; Parrish TB; Webb AG; Ronen I
    Front Phys; 2015 Mar; 3():. PubMed ID: 28344972
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Can anomalous diffusion models in magnetic resonance imaging be used to characterise white matter tissue microstructure?
    Yu Q; Reutens D; Vegh V
    Neuroimage; 2018 Jul; 175():122-137. PubMed ID: 29609006
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Observation of anomalous diffusion in excised tissue by characterizing the diffusion-time dependence of the MR signal.
    Ozarslan E; Basser PJ; Shepherd TM; Thelwall PE; Vemuri BC; Blackband SJ
    J Magn Reson; 2006 Dec; 183(2):315-23. PubMed ID: 16962801
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A fractional motion diffusion model for grading pediatric brain tumors.
    Karaman MM; Wang H; Sui Y; Engelhard HH; Li Y; Zhou XJ
    Neuroimage Clin; 2016; 12():707-714. PubMed ID: 27761401
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Studies of anomalous diffusion in the human brain using fractional order calculus.
    Zhou XJ; Gao Q; Abdullah O; Magin RL
    Magn Reson Med; 2010 Mar; 63(3):562-9. PubMed ID: 20187164
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A concise continuous time random-walk diffusion model for characterization of non-exponential signal decay in magnetic resonance imaging.
    Yu Y; Liang Y
    Magn Reson Imaging; 2023 Nov; 103():84-91. PubMed ID: 37451520
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of anomalous relaxation using the time-fractional Bloch equation and multiple echo T
    Qin S; Liu F; Turner IW; Yu Q; Yang Q; Vegh V
    Magn Reson Med; 2017 Apr; 77(4):1485-1494. PubMed ID: 27016390
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anisotropy in high-resolution diffusion-weighted MRI and anomalous diffusion.
    Hanyga A; Seredyńska M
    J Magn Reson; 2012 Jul; 220():85-93. PubMed ID: 22706028
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stochastic calculus for uncoupled continuous-time random walks.
    Germano G; Politi M; Scalas E; Schilling RL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jun; 79(6 Pt 2):066102. PubMed ID: 19658559
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differentiating low- and high-grade pediatric brain tumors using a continuous-time random-walk diffusion model at high b-values.
    Karaman MM; Sui Y; Wang H; Magin RL; Li Y; Zhou XJ
    Magn Reson Med; 2016 Oct; 76(4):1149-57. PubMed ID: 26519663
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Subordinated diffusion and continuous time random walk asymptotics.
    Dybiec B; Gudowska-Nowak E
    Chaos; 2010 Dec; 20(4):043129. PubMed ID: 21198099
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Langevin equation approach to diffusion magnetic resonance imaging.
    Cooke JM; Kalmykov YP; Coffey WT; Kerskens CM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Dec; 80(6 Pt 1):061102. PubMed ID: 20365113
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Clinical feasibility of using mean apparent propagator (MAP) MRI to characterize brain tissue microstructure.
    Avram AV; Sarlls JE; Barnett AS; Özarslan E; Thomas C; Irfanoglu MO; Hutchinson E; Pierpaoli C; Basser PJ
    Neuroimage; 2016 Feb; 127():422-434. PubMed ID: 26584864
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multispectral quantitative magnetic resonance imaging of brain iron stores: a theoretical perspective.
    Jara H; Sakai O; Mankal P; Irving RP; Norbash AM
    Top Magn Reson Imaging; 2006 Feb; 17(1):19-30. PubMed ID: 17179894
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analyzing signal attenuation in PFG anomalous diffusion via a non-Gaussian phase distribution approximation approach by fractional derivatives.
    Lin G
    J Chem Phys; 2016 Nov; 145(19):194202. PubMed ID: 27875861
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simulation of the MRI measurement of diffusion in realistic neural tissue models.
    Frank LR; Balls G; Rapp JL
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():2243-4. PubMed ID: 17946943
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.