These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 25271360)

  • 1. Approaches for modeling magnetic nanoparticle dynamics.
    Reeves DB; Weaver JB
    Crit Rev Biomed Eng; 2014; 42(1):85-93. PubMed ID: 25271360
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Temperature of the magnetic nanoparticle microenvironment: estimation from relaxation times.
    Perreard IM; Reeves DB; Zhang X; Kuehlert E; Forauer ER; Weaver JB
    Phys Med Biol; 2014 Mar; 59(5):1109-19. PubMed ID: 24556943
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simulation of the magnetization dynamics of diluted ferrofluids in medical applications.
    Rogge H; Erbe M; Buzug TM; Lüdtke-Buzug K
    Biomed Tech (Berl); 2013 Dec; 58(6):601-9. PubMed ID: 24163220
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Generalized Scaling and the Master Variable for Brownian Magnetic Nanoparticle Dynamics.
    Reeves DB; Shi Y; Weaver JB
    PLoS One; 2016; 11(3):e0150856. PubMed ID: 26959493
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vinamax: a macrospin simulation tool for magnetic nanoparticles.
    Leliaert J; Vansteenkiste A; Coene A; Dupré L; Van Waeyenberge B
    Med Biol Eng Comput; 2015 Apr; 53(4):309-17. PubMed ID: 25552437
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Fokker-Planck equation for coupled Brown-Néel-rotation.
    Weizenecker J
    Phys Med Biol; 2018 Jan; 63(3):035004. PubMed ID: 29235990
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanoparticle impacts reveal magnetic field induced agglomeration and reduced dissolution rates.
    Tschulik K; Compton RG
    Phys Chem Chem Phys; 2014 Jul; 16(27):13909-13. PubMed ID: 24898763
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rotational properties of ferromagnetic nanoparticles driven by a precessing magnetic field in a viscous fluid.
    Lyutyy TV; Denisov SI; Reva VV; Bystrik YS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Oct; 92(4):042312. PubMed ID: 26565245
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparisons of characteristic timescales and approximate models for Brownian magnetic nanoparticle rotations.
    Reeves DB; Weaver JB
    J Appl Phys; 2015 Jun; 117(23):233905. PubMed ID: 26130846
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Magnetic properties of nanocomposites formed by magnetic nanoparticles embedded in a non-magnetic matrix: a simulation approach.
    Serna JC; Restrepo-Parra E; Rojas JC
    J Nanosci Nanotechnol; 2012 Jun; 12(6):4979-83. PubMed ID: 22905562
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanism of magnetic relaxation switching sensing.
    Min C; Shao H; Liong M; Yoon TJ; Weissleder R; Lee H
    ACS Nano; 2012 Aug; 6(8):6821-8. PubMed ID: 22762250
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamics of magnetic particles near a surface: model and experiments on field-induced disaggregation.
    van Reenen A; Gao Y; de Jong AM; Hulsen MA; den Toonder JM; Prins MW
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Apr; 89(4):042306. PubMed ID: 24827250
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Empirical Expression for AC Magnetization Harmonics of Magnetic Nanoparticles under High-Frequency Excitation Field for Thermometry.
    Du Z; Wang D; Sun Y; Noguchi Y; Bai S; Yoshida T
    Nanomaterials (Basel); 2020 Dec; 10(12):. PubMed ID: 33327427
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 2D to 3D crossover of the magnetic properties in ordered arrays of iron oxide nanocrystals.
    Faure B; Wetterskog E; Gunnarsson K; Josten E; Hermann RP; Brückel T; Andreasen JW; Meneau F; Meyer M; Lyubartsev A; Bergström L; Salazar-Alvarez G; Svedlindh P
    Nanoscale; 2013 Feb; 5(3):953-60. PubMed ID: 23238262
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Empirical Expression of AC Susceptibility of Magnetic Nanoparticles and Potential Application in Biosensing.
    Du Z; Cui Y; Sun Y; Zhang H; Bai S; Yoshida T
    IEEE Trans Nanobioscience; 2022 Oct; 21(4):496-501. PubMed ID: 34752398
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling the Brownian relaxation of nanoparticle ferrofluids: comparison with experiment.
    Martens MA; Deissler RJ; Wu Y; Bauer L; Yao Z; Brown R; Griswold M
    Med Phys; 2013 Feb; 40(2):022303. PubMed ID: 23387765
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dependence of Brownian and Néel relaxation times on magnetic field strength.
    Deissler RJ; Wu Y; Martens MA
    Med Phys; 2014 Jan; 41(1):012301. PubMed ID: 24387522
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Behavior of nanoparticle clouds around a magnetized microsphere under magnetic and flow fields.
    Magnet C; Kuzhir P; Bossis G; Meunier A; Nave S; Zubarev A; Lomenech C; Bashtovoi V
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Mar; 89(3):032310. PubMed ID: 24730845
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modelling of Dynamic Behaviour in Magnetic Nanoparticles.
    Rietberg MT; Waanders S; Horstman-van de Loosdrecht MM; Wildeboer RR; Ten Haken B; Alic L
    Nanomaterials (Basel); 2021 Dec; 11(12):. PubMed ID: 34947745
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Numerically efficient estimation of relaxation effects in magnetic particle imaging.
    Rückert MA; Vogel P; Jakob PM; Behr VC
    Biomed Tech (Berl); 2013 Dec; 58(6):593-600. PubMed ID: 24277955
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.