These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 25271402)

  • 1. Pumping of water by rotating chiral carbon nanotube.
    Feng JW; Ding HM; Ren CL; Ma YQ
    Nanoscale; 2014 Nov; 6(22):13606-12. PubMed ID: 25271402
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Controlling water flow inside carbon nanotube with lipid membranes.
    Feng JW; Ding HM; Ma YQ
    J Chem Phys; 2014 Sep; 141(9):094901. PubMed ID: 25194388
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rotating-Electric-Field-Induced Carbon-Nanotube-Based Nanomotor in Water: A Molecular Dynamics Study.
    Rahman MM; Chowdhury MM; Alam MK
    Small; 2017 May; 13(19):. PubMed ID: 28371324
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Water desalination by electrical resonance inside carbon nanotubes.
    Feng JW; Ding HM; Ma YQ
    Phys Chem Chem Phys; 2016 Oct; 18(40):28290-28296. PubMed ID: 27711432
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysing thermophoretic transport of water for designing nanoscale-pumps.
    Rajegowda R; Sathian SP
    Phys Chem Chem Phys; 2018 Dec; 20(48):30321-30330. PubMed ID: 30484787
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Control of unidirectional transport of single-file water molecules through carbon nanotubes in an electric field.
    Su J; Guo H
    ACS Nano; 2011 Jan; 5(1):351-9. PubMed ID: 21162530
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of nanochannel dimension on the transport of water molecules.
    Su J; Guo H
    J Phys Chem B; 2012 May; 116(20):5925-32. PubMed ID: 22448756
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Water flow in carbon nanotubes: the role of tube chirality.
    Sam A; K VP; Sathian SP
    Phys Chem Chem Phys; 2019 Mar; 21(12):6566-6573. PubMed ID: 30849155
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detailed atomistic simulation of the nano-sorption and nano-diffusivity of water, tyrosol, vanillic acid, and p-coumaric acid in single wall carbon nanotubes.
    Anastassiou A; Karahaliou EK; Alexiadis O; Mavrantzas VG
    J Chem Phys; 2013 Oct; 139(16):164711. PubMed ID: 24182068
    [TBL] [Abstract][Full Text] [Related]  

  • 10. How ions block the single-file water transport through a carbon nanotube.
    Su Z; Chen J; Zhao Y; Su J
    Phys Chem Chem Phys; 2019 Jun; 21(21):11298-11305. PubMed ID: 31106311
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Translocation and encapsulation of siRNA inside carbon nanotubes.
    Mogurampelly S; Maiti PK
    J Chem Phys; 2013 Jan; 138(3):034901. PubMed ID: 23343299
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nonequilibrium molecular dynamics simulation of water transport through carbon nanotube membranes at low pressure.
    Wang L; Dumont RS; Dickson JM
    J Chem Phys; 2012 Jul; 137(4):044102. PubMed ID: 22852592
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Anisotropic dielectric relaxation of the water confined in nanotubes for terahertz spectroscopy studied by molecular dynamics simulations.
    Qi W; Chen J; Yang J; Lei X; Song B; Fang H
    J Phys Chem B; 2013 Jul; 117(26):7967-71. PubMed ID: 23751101
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Studies on the encapsulation of F- in single walled nanotubes of different chiralities using density functional theory calculations and Car-Parrinello molecular dynamics simulations.
    Ravinder P; Kumar RM; Subramanian V
    J Phys Chem A; 2012 Jun; 116(23):5519-28. PubMed ID: 22582972
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nonequilibrium molecular dynamics simulation of pressure-driven water transport through modified CNT membranes.
    Wang L; Dumont RS; Dickson JM
    J Chem Phys; 2013 Mar; 138(12):124701. PubMed ID: 23556736
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of nanotube-length on the transport properties of single-file water molecules: transition from bidirectional to unidirectional.
    Su J; Guo H
    J Chem Phys; 2011 Jun; 134(24):244513. PubMed ID: 21721649
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Water transport through functionalized nanotubes with tunable hydrophobicity.
    Moskowitz I; Snyder MA; Mittal J
    J Chem Phys; 2014 Nov; 141(18):18C532. PubMed ID: 25399197
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vibrational energy transfer between carbon nanotubes and liquid water: a molecular dynamics study.
    Nelson TR; Chaban VV; Kalugin ON; Prezhdo OV
    J Phys Chem B; 2010 Apr; 114(13):4609-14. PubMed ID: 20230009
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Unidirectional motion of a water nanodroplet subjected to a surface energy gradient.
    Kou J; Mei M; Lu H; Wu F; Fan J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 May; 85(5 Pt 2):056301. PubMed ID: 23004857
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular dynamics study on DNA oligonucleotide translocation through carbon nanotubes.
    Pei QX; Lim CG; Cheng Y; Gao H
    J Chem Phys; 2008 Sep; 129(12):125101. PubMed ID: 19045062
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.