These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 25271402)

  • 21. Effects of size constraint on water filling process in nanotube.
    Meng L; Li Q; Shuai Z
    J Chem Phys; 2008 Apr; 128(13):134703. PubMed ID: 18397090
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Adsorption of insulin peptide on charged single-walled carbon nanotubes: significant role of ordered water molecules.
    Shen JW; Wu T; Wang Q; Kang Y; Chen X
    Chemphyschem; 2009 Jun; 10(8):1260-9. PubMed ID: 19353602
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Strong correlations and Fickian water diffusion in narrow carbon nanotubes.
    Mukherjee B; Maiti PK; Dasgupta C; Sood AK
    J Chem Phys; 2007 Mar; 126(12):124704. PubMed ID: 17411149
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Interface nanoparticle control of a nanometer water pump.
    Su J; Zhao Y; Fang C; Bilal Ahmed S; Shi Y
    Phys Chem Chem Phys; 2017 Aug; 19(33):22406-22416. PubMed ID: 28808710
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Nano-electro-mechanical pump: Giant pumping of water in carbon nanotubes.
    Farimani AB; Heiranian M; Aluru NR
    Sci Rep; 2016 May; 6():26211. PubMed ID: 27193507
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Investigating the atomic behavior of carbon nanotubes as nanopumps.
    Shahryari M; Nazari-Golshan A; Nourazar SS; Abedi M
    Sci Rep; 2023 Oct; 13(1):18068. PubMed ID: 37872394
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ab initio molecular dynamics simulations of water and an excess proton in water confined in carbon nanotubes.
    Clark JK; Paddison SJ
    Phys Chem Chem Phys; 2014 Sep; 16(33):17756-69. PubMed ID: 25030323
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fabrication of carbon nanoscrolls from monolayer graphene.
    Xia D; Xue Q; Xie J; Chen H; Lv C; Besenbacher F; Dong M
    Small; 2010 Sep; 6(18):2010-9. PubMed ID: 20715074
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Anisotropy of the water-carbon interaction: molecular simulations of water in low-diameter carbon nanotubes.
    Pérez-Hernández G; Schmidt B
    Phys Chem Chem Phys; 2013 Apr; 15(14):4995-5006. PubMed ID: 23443614
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Collapse and stability of single- and multi-wall carbon nanotubes.
    Xiao J; Liu B; Huang Y; Zuo J; Hwang KC; Yu MF
    Nanotechnology; 2007 Oct; 18(39):395703. PubMed ID: 21730428
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Flow structure of water in carbon nanotubes: poiseuille type or plug-like?
    Hanasaki I; Nakatani A
    J Chem Phys; 2006 Apr; 124(14):144708. PubMed ID: 16626232
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Enhanced water transport through a carbon nanotube controlled by the lateral pressure.
    Lv F; Fang C; Su J
    Nanotechnology; 2019 Jun; 30(24):245707. PubMed ID: 30836337
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Theoretical characterization of the topology of connected carbon nanotubes in random networks.
    Heitz J; Leroy Y; Hébrard L; Lallement C
    Nanotechnology; 2011 Aug; 22(34):345703. PubMed ID: 21795773
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Carbon Nanotubes as Thermally Induced Water Pumps.
    Oyarzua E; Walther JH; Megaridis CM; Koumoutsakos P; Zambrano HA
    ACS Nano; 2017 Oct; 11(10):9997-10002. PubMed ID: 28953353
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Theory and simulations of water flow through carbon nanotubes: prospects and pitfalls.
    Bonthuis DJ; Rinne KF; Falk K; Nadir Kaplan C; Horinek D; Nihat Berker A; Bocquet L; Netz RR
    J Phys Condens Matter; 2011 May; 23(18):184110. PubMed ID: 21508478
    [TBL] [Abstract][Full Text] [Related]  

  • 36. From a bulk to nanoconfined water chain: bridge water at the pore of the (6,6) carbon nanotube.
    Jia Y; Lu X; Cao Z; Yan T
    Phys Chem Chem Phys; 2020 Nov; 22(44):25747-25759. PubMed ID: 33146653
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Inducing a Net Positive Flow of Water in Functionalized Concentric Carbon Nanotubes Using Rotating Electric Fields.
    Ostler D; Kannam SK; Frascoli F; Daivis PJ; D Todd B
    Langmuir; 2019 Nov; 35(45):14742-14749. PubMed ID: 31614091
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Nanoscale fluid-structure interaction: flow resistance and energy transfer between water and carbon nanotubes.
    Chen C; Ma M; Jin K; Liu JZ; Shen L; Zheng Q; Xu Z
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Oct; 84(4 Pt 2):046314. PubMed ID: 22181268
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Molecular dynamics study of nanoconfined water flow driven by rotating electric fields under realistic experimental conditions.
    De Luca S; Todd BD; Hansen JS; Daivis PJ
    Langmuir; 2014 Mar; 30(11):3095-109. PubMed ID: 24575940
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Molecular dynamics study of the behavior of nitromethanes enclosed inside carbon nanotube containers.
    Bae SW; Cho SG
    J Mol Model; 2016 Jul; 22(7):147. PubMed ID: 27262575
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.