These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
110 related articles for article (PubMed ID: 25271474)
1. Detection of airborne carbon nanotubes based on the reactivity of the embedded catalyst. Neubauer N; Kasper G J Occup Environ Hyg; 2015; 12(3):182-8. PubMed ID: 25271474 [TBL] [Abstract][Full Text] [Related]
2. Exposure and emission measurements during production, purification, and functionalization of arc-discharge-produced multi-walled carbon nanotubes. Hedmer M; Isaxon C; Nilsson PT; Ludvigsson L; Messing ME; Genberg J; Skaug V; Bohgard M; Tinnerberg H; Pagels JH Ann Occup Hyg; 2014 Apr; 58(3):355-79. PubMed ID: 24389082 [TBL] [Abstract][Full Text] [Related]
3. Functionality based detection of airborne engineered nanoparticles in quasi real time: a new type of detector and a new metric. Neubauer N; Seipenbusch M; Kasper G Ann Occup Hyg; 2013 Aug; 57(7):842-52. PubMed ID: 23504803 [TBL] [Abstract][Full Text] [Related]
4. Carbon Nanotube Emissions from Arc Discharge Production: Classification of Particle Types with Electron Microscopy and Comparison with Direct Reading Techniques. Ludvigsson L; Isaxon C; Nilsson PT; Tinnerberg H; Messing ME; Rissler J; Skaug V; Gudmundsson A; Bohgard M; Hedmer M; Pagels J Ann Occup Hyg; 2016 May; 60(4):493-512. PubMed ID: 26748380 [TBL] [Abstract][Full Text] [Related]
5. Detection of Multi-walled Carbon Nanotubes and Carbon Nanodiscs on Workplace Surfaces at a Small-Scale Producer. Hedmer M; Ludvigsson L; Isaxon C; Nilsson PT; Skaug V; Bohgard M; Pagels JH; Messing ME; Tinnerberg H Ann Occup Hyg; 2015 Aug; 59(7):836-52. PubMed ID: 26122528 [TBL] [Abstract][Full Text] [Related]
6. Detection of Carbonaceous Aerosols Released in CNT Workplaces Using an Aethalometer. Kim JB; Kim KH; Yun ST; Bae GN Ann Occup Hyg; 2016 Jul; 60(6):717-30. PubMed ID: 27179059 [TBL] [Abstract][Full Text] [Related]
7. Real-Time Emission and Exposure Measurements of Multi-walled Carbon Nanotubes during Production, Power Sawing, and Testing of Epoxy-Based Nanocomposites. Hedmer M; Lovén K; Martinsson J; Messing ME; Gudmundsson A; Pagels J Ann Work Expo Health; 2022 Aug; 66(7):878-894. PubMed ID: 35297480 [TBL] [Abstract][Full Text] [Related]
8. Aerosol Emission Monitoring and Assessment of Potential Exposure to Multi-walled Carbon Nanotubes in the Manufacture of Polymer Nanocomposites. Thompson D; Chen SC; Wang J; Pui DY Ann Occup Hyg; 2015 Nov; 59(9):1135-51. PubMed ID: 26209597 [TBL] [Abstract][Full Text] [Related]
9. Assessment of exhaust emissions from carbon nanotube production and particle collection by sampling filters. Tsai CS; Hofmann M; Hallock M; Ellenbecker M; Kong J J Air Waste Manag Assoc; 2015 Nov; 65(11):1376-85. PubMed ID: 26484976 [TBL] [Abstract][Full Text] [Related]
10. Detection of Carbon Nanotubes in Indoor Workplaces Using Elemental Impurities. Rasmussen PE; Avramescu ML; Jayawardene I; Gardner HD Environ Sci Technol; 2015 Nov; 49(21):12888-96. PubMed ID: 26451679 [TBL] [Abstract][Full Text] [Related]
11. Workplace aerosol mass concentration measurement using optical particle counters. Görner P; Simon X; Bémer D; Lidén G J Environ Monit; 2012 Feb; 14(2):420-8. PubMed ID: 22009365 [TBL] [Abstract][Full Text] [Related]
12. Real-Time Measurement of Airborne Carbon Nanotubes in Workplace Atmospheres. Zheng L; Kulkarni P Anal Chem; 2019 Oct; 91(20):12713-12723. PubMed ID: 31502830 [TBL] [Abstract][Full Text] [Related]
13. Laboratory evaluation of a personal aethalometer for assessing airborne carbon nanotube exposures. O'Shaughnessy P; Stoltenberg A; Holder C; Altmaier R J Occup Environ Hyg; 2020 Jun; 17(6):262-273. PubMed ID: 32286917 [TBL] [Abstract][Full Text] [Related]
14. Preparation of airborne Ag/CNT hybrid nanoparticles using an aerosol process and their application to antimicrobial air filtration. Jung JH; Hwang GB; Lee JE; Bae GN Langmuir; 2011 Aug; 27(16):10256-64. PubMed ID: 21751779 [TBL] [Abstract][Full Text] [Related]
15. Characterization of Potential Exposures to Nanoparticles and Fibers during Manufacturing and Recycling of Carbon Nanotube Reinforced Polypropylene Composites. Boonruksa P; Bello D; Zhang J; Isaacs JA; Mead JL; Woskie SR Ann Occup Hyg; 2016 Jan; 60(1):40-55. PubMed ID: 26447230 [TBL] [Abstract][Full Text] [Related]
16. Exposure assessment of carbon nanotube manufacturing workplaces. Lee JH; Lee SB; Bae GN; Jeon KS; Yoon JU; Ji JH; Sung JH; Lee BG; Lee JH; Yang JS; Kim HY; Kang CS; Yu IJ Inhal Toxicol; 2010 Apr; 22(5):369-81. PubMed ID: 20121582 [TBL] [Abstract][Full Text] [Related]
17. A New Approach Combining Analytical Methods for Workplace Exposure Assessment of Inhalable Multi-Walled Carbon Nanotubes. Tromp PC; Kuijpers E; Bekker C; Godderis L; Lan Q; Jedynska AD; Vermeulen R; Pronk A Ann Work Expo Health; 2017 Aug; 61(7):759-772. PubMed ID: 28810684 [TBL] [Abstract][Full Text] [Related]
18. Metal-modified and vertically aligned carbon nanotube sensors array for landfill gas monitoring applications. Penza M; Rossi R; Alvisi M; Serra E Nanotechnology; 2010 Mar; 21(10):105501. PubMed ID: 20154374 [TBL] [Abstract][Full Text] [Related]
19. A proposal of method for evaluating airborne MWCNT concentration. Ono-Ogasawara M; Myojo T Ind Health; 2011; 49(6):726-34. PubMed ID: 22020016 [TBL] [Abstract][Full Text] [Related]
20. Characterizing exposures to airborne metals and nanoparticle emissions in a refinery. Miller A; Drake PL; Hintz P; Habjan M Ann Occup Hyg; 2010 Jul; 54(5):504-13. PubMed ID: 20403942 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]