These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
225 related articles for article (PubMed ID: 25271711)
1. Monophasic ligand-free alloy nanoparticle synthesis determinants during pulsed laser ablation of bulk alloy and consolidated microparticles in water. Neumeister A; Jakobi J; Rehbock C; Moysig J; Barcikowski S Phys Chem Chem Phys; 2014 Nov; 16(43):23671-8. PubMed ID: 25271711 [TBL] [Abstract][Full Text] [Related]
2. Synthesis of Au-Ag Alloy Nanoparticles in Deionized Water by Pulsed Laser Ablation Technique. Norsyuhada W; Shukri WM; Bidin N; Islam S; Krishnan G J Nanosci Nanotechnol; 2018 Jul; 18(7):4841-4851. PubMed ID: 29442664 [TBL] [Abstract][Full Text] [Related]
3. Metastable alloy nanoparticles, metal-oxide nanocrescents and nanoshells generated by laser ablation in liquid solution: influence of the chemical environment on structure and composition. Scaramuzza S; Agnoli S; Amendola V Phys Chem Chem Phys; 2015 Nov; 17(42):28076-87. PubMed ID: 25746398 [TBL] [Abstract][Full Text] [Related]
4. Colloidal Metal Nanoparticles Prepared by Laser Ablation and their Applications. Zhang J; Claverie J; Chaker M; Ma D Chemphyschem; 2017 May; 18(9):986-1006. PubMed ID: 28164418 [TBL] [Abstract][Full Text] [Related]
5. Laser synthesis, structure and chemical properties of colloidal nickel-molybdenum nanoparticles for the substitution of noble metals in heterogeneous catalysis. Marzun G; Levish A; Mackert V; Kallio T; Barcikowski S; Wagener P J Colloid Interface Sci; 2017 Mar; 489():57-67. PubMed ID: 27651318 [TBL] [Abstract][Full Text] [Related]
6. Pulsed laser ablation based synthesis of colloidal metal nanoparticles for catalytic applications. Zhang J; Chaker M; Ma D J Colloid Interface Sci; 2017 Mar; 489():138-149. PubMed ID: 27554172 [TBL] [Abstract][Full Text] [Related]
7. A facile and controllable strategy to synthesize Au-Ag alloy nanoparticles within polyelectrolyte multilayer nanoreactors upon thermal reduction. Shang L; Jin L; Guo S; Zhai J; Dong S Langmuir; 2010 May; 26(9):6713-9. PubMed ID: 20017511 [TBL] [Abstract][Full Text] [Related]
8. [Synthesis and absorption spectra properties of Au-Ag alloy nanoparticles using gallic acid as reductant]. Wang WX; Huang YP; Chen QF; Xu SK; Yang DZ Guang Pu Xue Yu Guang Pu Fen Xi; 2008 Aug; 28(8):1726-9. PubMed ID: 18975789 [TBL] [Abstract][Full Text] [Related]
9. Formation of alloy nanoparticles by laser ablation of Au/Fe multilayer films in liquid environment. Amendola V; Scaramuzza S; Carraro F; Cattaruzza E J Colloid Interface Sci; 2017 Mar; 489():18-27. PubMed ID: 27770998 [TBL] [Abstract][Full Text] [Related]
10. Highly active PtAu alloy nanoparticle catalysts for the reduction of 4-nitrophenol. Zhang J; Chen G; Guay D; Chaker M; Ma D Nanoscale; 2014 Feb; 6(4):2125-30. PubMed ID: 24217271 [TBL] [Abstract][Full Text] [Related]
11. Fragmentation mechanism of the generation of colloidal copper(i) iodide nanoparticles by pulsed laser irradiation in liquids. Schaumberg CA; Wollgarten M; Rademann K Phys Chem Chem Phys; 2015 Jul; 17(27):17934-8. PubMed ID: 26094747 [TBL] [Abstract][Full Text] [Related]
12. Synthesis of block copolymer-stabilized Au-Ag alloy nanoparticles and fabrication of poly(methyl methacrylate)/Au-Ag nanocomposite film. Chatterjee U; Jewrajka SK J Colloid Interface Sci; 2007 Sep; 313(2):717-23. PubMed ID: 17574566 [TBL] [Abstract][Full Text] [Related]
13. Synthesis of platinum-based binary and ternary alloy nanoparticles in an intense laser field. Herbani Y; Nakamura T; Sato S J Colloid Interface Sci; 2012 Jun; 375(1):78-87. PubMed ID: 22443965 [TBL] [Abstract][Full Text] [Related]
14. Effects of Liquid Medium and Ablation Wavelength on the Properties of Cadmium Sulfide Nanoparticles Formed by Pulsed-Laser Ablation. García Guillén G; Zuñiga Ibarra VA; Mendivil Palma MI; Krishnan B; Avellaneda Avellaneda D; Shaji S Chemphyschem; 2017 May; 18(9):1035-1046. PubMed ID: 27813235 [TBL] [Abstract][Full Text] [Related]
15. Effects of Oxidizing Media on the Composition, Morphology and Optical Properties of Colloidal Zirconium Oxide Nanoparticles Synthesized via Pulsed Laser Ablation in Liquid Technique. Gondal MA; Fasasi TA; Baig U; Mekki A J Nanosci Nanotechnol; 2018 Jun; 18(6):4030-4039. PubMed ID: 29442740 [TBL] [Abstract][Full Text] [Related]
16. Facile one-pot green synthesis of Au-Ag alloy nanoparticles using sucrose and their composition-dependent photocatalytic activity for the reduction of 4-nitrophenol. Sun L; Yin Y; Wang F; Su W; Zhang L Dalton Trans; 2018 Mar; 47(12):4315-4324. PubMed ID: 29488519 [TBL] [Abstract][Full Text] [Related]
17. Rapid synthesis of highly monodisperse Au(x)Ag(1-x) alloy nanoparticles via a half-seeding approach. Chng TT; Polavarapu L; Xu QH; Ji W; Zeng HC Langmuir; 2011 May; 27(9):5633-43. PubMed ID: 21462957 [TBL] [Abstract][Full Text] [Related]
18. Evolution of catalytic activity of Au-Ag bimetallic nanoparticles on mesoporous support for CO oxidation. Wang AQ; Chang CM; Mou CY J Phys Chem B; 2005 Oct; 109(40):18860-7. PubMed ID: 16853427 [TBL] [Abstract][Full Text] [Related]
19. Current state of laser synthesis of metal and alloy nanoparticles as ligand-free reference materials for nano-toxicological assays. Rehbock C; Jakobi J; Gamrad L; van der Meer S; Tiedemann D; Taylor U; Kues W; Rath D; Barcikowski S Beilstein J Nanotechnol; 2014; 5():1523-41. PubMed ID: 25247135 [TBL] [Abstract][Full Text] [Related]
20. Generation of Ag-Ag(2)O complex nanostructures by excimer laser ablation of Ag in water. Yan Z; Bao R; Chrisey DB Phys Chem Chem Phys; 2013 Mar; 15(9):3052-6. PubMed ID: 23093092 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]