BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

261 related articles for article (PubMed ID: 25272236)

  • 1. Ionomers of intrinsic microporosity: in silico development of ionic-functionalized gas-separation membranes.
    Hart KE; Colina CM
    Langmuir; 2014 Oct; 30(40):12039-48. PubMed ID: 25272236
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ionic-Functionalized Polymers of Intrinsic Microporosity for Gas Separation Applications.
    Rukmani SJ; Liyana-Arachchi TP; Hart KE; Colina CM
    Langmuir; 2018 Apr; 34(13):3949-3960. PubMed ID: 29553745
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intrinsically Microporous Polymer Nanosheets for High-Performance Gas Separation Membranes.
    Tamaddondar M; Foster AB; Luque-Alled JM; Msayib KJ; Carta M; Sorribas S; Gorgojo P; McKeown NB; Budd PM
    Macromol Rapid Commun; 2020 Jan; 41(2):e1900572. PubMed ID: 31846137
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Advancements in Gas Separation for Energy Applications: Exploring the Potential of Polymer Membranes with Intrinsic Microporosity (PIM).
    Astorino C; De Nardo E; Lettieri S; Ferraro G; Pirri CF; Bocchini S
    Membranes (Basel); 2023 Dec; 13(12):. PubMed ID: 38132907
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis and Characterization of a Novel Microporous Dihydroxyl-Functionalized Triptycene-Diamine-Based Polyimide for Natural Gas Membrane Separation.
    Alaslai N; Ma X; Ghanem B; Wang Y; Alghunaimi F; Pinnau I
    Macromol Rapid Commun; 2017 Sep; 38(18):. PubMed ID: 28691317
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tailoring the Microporosity of Polymers of Intrinsic Microporosity for Advanced Gas Separation by Atomic Layer Deposition.
    Chen X; Wu L; Yang H; Qin Y; Ma X; Li N
    Angew Chem Int Ed Engl; 2021 Aug; 60(33):17875-17880. PubMed ID: 33547845
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engineering the Polymer-MOF Interface in Microporous Composites to Address Complex Mixture Separations.
    Wu WN; Mizrahi Rodriguez K; Roy N; Teesdale JJ; Han G; Liu A; Smith ZP
    ACS Appl Mater Interfaces; 2023 Nov; ():. PubMed ID: 37931132
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Facile Synthesis of a Pentiptycene-Based Highly Microporous Organic Polymer for Gas Storage and Water Treatment.
    Luo S; Zhang Q; Zhang Y; Weaver KP; Phillip WA; Guo R
    ACS Appl Mater Interfaces; 2018 May; 10(17):15174-15182. PubMed ID: 29658699
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Controlled synthesis of conjugated polycarbazole polymers via structure tuning for gas storage and separation applications.
    Li G; Qin L; Yao C; Xu Y
    Sci Rep; 2017 Nov; 7(1):15394. PubMed ID: 29133792
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Blends of a Polymer of Intrinsic Microporosity and Partially Sulfonated Polyphenylenesulfone for Gas Separation.
    Yong WF; Lee ZK; Chung TS; Weber M; Staudt C; Maletzko C
    ChemSusChem; 2016 Aug; 9(15):1953-62. PubMed ID: 27332951
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functionalized Covalent Triazine Frameworks for Effective CO
    Fu Y; Wang Z; Li S; He X; Pan C; Yan J; Yu G
    ACS Appl Mater Interfaces; 2018 Oct; 10(42):36002-36009. PubMed ID: 30272437
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-Performance Polymers for Membrane CO
    Liu J; Hou X; Park HB; Lin H
    Chemistry; 2016 Nov; 22(45):15980-15990. PubMed ID: 27539399
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High CO2-capture ability of a porous organic polymer bifunctionalized with carboxy and triazole groups.
    Xie LH; Suh MP
    Chemistry; 2013 Aug; 19(35):11590-7. PubMed ID: 23881821
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of Surface Phenolic-OH Groups in N-Rich Porous Organic Polymers for Enhancing the CO
    Das SK; Bhanja P; Kundu SK; Mondal S; Bhaumik A
    ACS Appl Mater Interfaces; 2018 Jul; 10(28):23813-23824. PubMed ID: 29956910
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis and characterization of functional thienyl-phosphine microporous polymers for carbon dioxide capture.
    Chen X; Qiao S; Du Z; Zhou Y; Yang R
    Macromol Rapid Commun; 2013 Jul; 34(14):1181-5. PubMed ID: 23757097
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A microporous MOF with a polar pore surface exhibiting excellent selective adsorption of CO
    Pal A; Chand S; Elahi SM; Das MC
    Dalton Trans; 2017 Nov; 46(44):15280-15286. PubMed ID: 29068020
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Directing the structural features of N(2)-phobic nanoporous covalent organic polymers for CO(2) capture and separation.
    Patel HA; Je SH; Park J; Jung Y; Coskun A; Yavuz CT
    Chemistry; 2014 Jan; 20(3):772-80. PubMed ID: 24338860
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ionic Liquids-Polymer of Intrinsic Microporosity (PIMs) Blend Membranes for CO
    Ferraro G; Astorino C; Bartoli M; Martis A; Lettieri S; Pirri CF; Bocchini S
    Membranes (Basel); 2022 Dec; 12(12):. PubMed ID: 36557169
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of pristine and functionalized single- and multi-walled carbon nanotubes on CO
    Golzar K; Modarress H; Amjad-Iranagh S
    J Mol Model; 2017 Aug; 23(9):266. PubMed ID: 28823034
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Imidazolium-Functionalized Ionic Hypercrosslinked Porous Polymers for Efficient Synthesis of Cyclic Carbonates from Simulated Flue Gas.
    Zhang W; Ma F; Ma L; Zhou Y; Wang J
    ChemSusChem; 2020 Jan; 13(2):341-350. PubMed ID: 31709710
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.